• Skip to main content
  • Bỏ qua primary sidebar
  • Bài học Toán lớp 1
  • Học tiếng Anh
  • CNTT
  • Giáo dục
  • Nghe Nhạc

Học hỏi Net

Mạng học hỏi cho học sinh và cuộc sống

Bạn đang ở:Trang chủ / Bài học Toán 7 / Toán 7 Chương 1 Bài 7: Tỉ lệ thức

Toán 7 Chương 1 Bài 7: Tỉ lệ thức

14/03/2021 by Minh Đạo

1. Tóm tắt lý thuyết

1.1. Tỉ số của hai số hữu tỉ

Thương trong phép chia số hữu tỉ a cho số hữu tỉ b, với \(b \ne 0\), gọi là tỉ số của a và b, kí hiệu \(\frac{a}{b}\,\,(b \ne 0)\).

Chú ý:

  • Tỉ số của a và b đôi khi cũng được nói là tỉ số giữa a và b.

  • Khái niệm tỉ số thường được sử dụng để nói về thương của hai đại lượng cùng đơn vị đo, do vậy vậy khi lập tỉ số giữa hai đại lượng thì cần phải đưa các đại lượng về cùng một đơn vị đo và tỉ số giữa hai đại lượng (cùng đơn vị đo) là tỉ số giữa số đo của đại lượng thứ nhất với số đo của đại lượng thứ hai.

1.2. Tỉ lệ thức

a) Định nghĩa

Nếu hai tỉ số \(\frac{a}{b}\) và \(\frac{c}{d}\) bằng nhau thì ta có tỉ lệ thức:

\(\frac{a}{b} = \frac{c}{d}\) hoặc \(a:b = c:d\)

  • Trong tỉ lệ thức trên đây thì các số hạng a, b được gọi là các ngoại tỉ, còn b, c gọi là các trung tỉ. Tỉ lệ thức còn gọi là đẳng thức tỉ lệ.

b) Tính chất

Tính chất này được phát biểu như sau: Trong một tỉ lệ thức thì tích các trung tỉ bằng các ngoại tỉ.

  • Từ đẳng thức ad = bc với \(a,b,c,d \ne 0,\) ta có thể suy ra bốn tỉ lệ thức sau:

\(\frac{a}{b} = \frac{c}{d};\,\,\,\,\frac{a}{c} = \frac{b}{d};\,\,\,\frac{c}{a} = \frac{d}{b};\,\,\,\,\frac{d}{c} = \frac{b}{a}.\)

Trong bốn tỉ lệ thức, để từ một tỉ lệ thức này suy ra một tỉ lệ thức khác, ta thực hiện việc hoán vị các trung tỉ, ngoại tỉ.

  • Trong một tỉ lệ thức, nếu biết ba số hạng thì ta có thể tìm được số hạng thứ tư.

  • Trong tỉ lệ thức \(\frac{x}{a} = \frac{b}{x},\) ta có \({x^2} = a.b.\) Số x được gọi là trung bình nhân của hai số a và b.

2. Bài tập minh họa

Câu 1:

a) Cho bốn số 4; 8; 13; 26. Có thể lập được một tỉ lệ thức từ bốn số ấy không? Nếu có thì lập tất cả các tỉ lệ thức có thể có.

b) Cho ba số 2,25 ; 7, 5 và \(\frac{{25}}{6}.\) Tìm một số x để hợp với ba số đã cho thành một bộ bốn số mà từ đó ta có thể lập thành các tỉ lệ thức.

Hướng dẫn giải

a) Ta có 8.13 = 104; 4. 26 = 104

Do đó  8 . 13 = 4 . 26

Vậy với bốn số 4, 8, 13, 26 ta có thể lập thành các tỉ lệ thức:

\(\frac{4}{8} = \frac{{23}}{{26}};\,\,\,\,\frac{8}{4} = \frac{{26}}{{13}};\,\,\,\frac{4}{{13}} = \frac{8}{{26}};\,\,\,\frac{{13}}{4} = \frac{{26}}{8}\)

b) Ta có \(7,5:2,25 = x:\frac{{25}}{6}\)

\( \Rightarrow x = \frac{{7,5.\frac{{25}}{6}}}{{2,25}} = \left( {\frac{{15}}{2}.\frac{{25}}{6}} \right):\frac{9}{4}\)

\( \Rightarrow x = \frac{{125}}{9}.\)

Câu 2: Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b} = \frac{c}{d}\) ta suy ra \(\frac{{a + b}}{b} = \frac{{c + d}}{d}.\)

Hướng dẫn giải

Từ \(\frac{a}{b} = \frac{c}{d}\). Ta cộng thêm 1 vào hai vế và có:

\(\frac{a}{b} + 1 = \frac{c}{d} + 1 \Rightarrow \frac{{a + b}}{b} = \frac{{c + d}}{d}\)

Chú ý: Ta còn có thể có các cách chứng minh khác như sau:

Cộng cả hai vế của đẳng thức này với bd, ta có:

\(ad + bd = bc + bd \Rightarrow d(a + b) = b(c + d)\)

Từ đẳng thức này ta có \(\frac{{a + b}}{b} = \frac{{c + d}}{d}\)

\( \Rightarrow a + b = kb + b = b(k + 1)\)

\(c + d = kd + d = d(k + 1)\)

Vậy: \(\frac{{a + b}}{b} = \frac{{b(k + 1)}}{b} = k + 1;\,\,\frac{{c + d}}{d} = \frac{{d(k + 1)}}{d} = k + 1;\)

Từ hai kết quả này, ta có ngay \(\frac{{a + b}}{b} = \frac{{c + d}}{d}\).

Câu 3: Có thể lập được tỉ lệ thức từ các số sau đây không? Nếu có hãy viết các tỉ lệ thức đó: 3; 9; 27; 81; 243

Hướng dẫn giải

Từ 4 trong 5 số đã cho, ta có thể lập được ba đẳng thức:

3 .243 = 9.81 (1)

9.243=27.81 (2)

3.81 = 9.27 (3)

Từ mỗi đẳng thức trên, ta lại lập được bốn tỉ lệ thức.

Ví dụ từ (1) ta có:

\(\frac{3}{9} = \frac{{81}}{{243}};\,\,\,\frac{3}{{81}} = \frac{9}{{243}};\,\,\,\frac{{243}}{9} = \frac{{81}}{3};\,\,\,\,\frac{{243}}{{81}} = \frac{9}{3}\)

Vậy có thể lập được 12 tỉ lệ thức từ các số đã cho.

3. Luyện tập

3.1. Bài tập tự luận

Câu 1: Tìm x trong tỉ lệ thức:

a. \(\frac{{x – 1}}{{x + 5}} = \frac{6}{7}\,\,\,(x \ne 5)\)

b. \(\frac{{{x^2}}}{6} = \frac{{24}}{{25}}\)

c. \(\frac{{x – 2}}{{x – 1}} = \frac{{x + 4}}{{x + 7}}(x \ne 1,x \ne  – 7)\)

Câu 2: Chứng minh tứ tỉ lệ thức \(\frac{a}{b} = \frac{c}{d}\) (với \(b,d \ne 0\) ) ta suy ra được \(\frac{a}{b} = \frac{{a + c}}{{b + d}}\).

Câu 3: Tìm hai số x và y biết:

\(\frac{x}{7} = \frac{y}{{13}}\) và x + y =40

3.2. Bài tập trắc nghiệm

Câu 1: Cho đẳng thức \(a{\rm{d}} = bc\,\,(a,b,c,d \ne 0)\). Tỉ lệ thức nào sau đây là sai: 

A. \(\frac{a}{d} = \frac{b}{c}\)

B. \(\frac{a}{b} = \frac{c}{d}\)

C. \(\frac{a}{c} = \frac{b}{d}\)

D. \(\frac{d}{c} = \frac{b}{a}\)

Câu 2: Cặp số nào sau đây lập thành một tỉ lệ thức?

A. \(\frac{8}{{12}}\) và \(\frac{{12}}{{10}}\)

B. \(0,4:\frac{5}{3}\) và \(\frac{3}{5}\)

C. 0,25 : 1,75 và \(\frac{2}{{14}}\)

D. 0,25 : 1,5 và \(\frac{1}{3}\)

 Câu 3: Giá trị của x trong tỉ lệ thức \(\frac{{ – 4,8}}{x} = \frac{{12}}{{0,2}}\) là ?

A. -0,08

B. \(\frac{2}{{25}}\)

C. -0,06

D. \(\frac{4}{9}\)

Câu 4: Cho \(\frac{x}{5} = \frac{y}{7}\)  và \(x + y = 24\). Tổng của x, y là?

A. 10

B. 14

C. 22

D. 24

Câu 5:  Cho \(\frac{a}{b} = \frac{c}{d}\), điều nào sau đây không đúng?

A. ad = bc

B. \(\frac{a}{c} = \frac{b}{d}\)

C. \(\frac{c}{a} = \frac{d}{b}\)

D. ab = cd

4. Kết luận 

Qua bài học này, các em cần đạt được những mục tiêu sau:

  • Tỉ số của hai số hữu tỉ.

  • Định nghĩa, tính chất tỉ lệ thức.

Thuộc chủ đề:Bài học Toán 7 Tag với:Đại số 7 Chương 1

Bài liên quan:

  1. Toán 7 Chương 1 Bài 12: Số thực
  2. Toán 7 Chương 1 Bài 11: Số vô tỉ. Khái niệm về căn bậc hai
  3. Toán 7 Chương 1 Bài 10: Làm tròn số
  4. Toán 7 Chương 1 Bài 9: Số thập phân hữu hạn. Số thập phân vô hạn tuần hoàn
  5. Toán 7 Chương 1 Bài 8: Tính chất của dãy tỉ số bằng nhau
  6. Toán 7 Chương 1 Bài 6: Lũy thừa của một số hữu tỉ (tiếp)
  7. Toán 7 Chương 1 Bài 5: Lũy thừa của một số hữu tỉ
  8. Toán 7 Chương 1 Bài 3: Nhân, chia số hữu tỉ
  9. Toán 7 Chương 1 Bài 2: Cộng, trừ số hữu tỉ
  10. Toán 7 Chương 1 Bài 1: Tập hợp Q các số hữu tỉ

Sidebar chính

Bài viết mới

  • Giải bài tập Toán lớp 3 Bài: Luyện tập chung 17/03/2021
  • Giải bài tập Toán lớp 3 Bài: Ôn tập về giải toán 17/03/2021
  • Giải bài tập Toán lớp 3 Bài: Ôn tập về hình học 17/03/2021
  • Giải bài tập Toán lớp 3 Bài: Ôn tập về đại lượng 17/03/2021
  • Giải bài tập Toán lớp 3 Bài: Ôn tập bốn phép tính trong phạm vi 100000 17/03/2021

Chuyên mục

  • Bài học Công nghệ 6 (32)
  • Bài học Công Nghệ 7 (60)
  • Bài học Địa lý 6 (27)
  • Bài học Địa lý 7 (61)
  • Bài học GDCD 6 (18)
  • Bài học GDCD 7 (18)
  • Bài học Lịch sử 6 (23)
  • Bài học Lịch sử 7 (29)
  • Bài học Ngữ Văn 6 (97)
  • Bài học Ngữ Văn 7 (101)
  • Bài học Sinh 6 (50)
  • Bài học Sinh 7 (61)
  • Bài học Tiếng Việt lớp 5 (258)
  • Bài học Tin học 6 (30)
  • Bài học Tin học 7 (23)
  • Bài học Toán 6 (67)
  • Bài học Toán 7 (54)
  • Bài học Toán lớp 1 (61)
  • Bài học Toán lớp 2 (92)
  • Bài học Toán lớp 3 (75)
  • Bài học Toán lớp 4 (63)
  • Bài học Toán lớp 5 (57)
  • Bài học Vật lý 6 (30)
  • Bài học Vật lý 7 (30)
  • CNTT (3)
  • Family and Friends 1 (62)
  • Family and Friends 2 (80)
  • Family and Friends 3 (80)
  • Family and Friends 4 (84)
  • Family and Friends 5 (76)
  • Giải SGK Tiếng Anh 5 mới (67)
  • Giải SGK Tiếng Anh 6 mới (102)
  • Giải SGK Tiếng Anh 7 mới (98)
  • Giải SGK Tiếng Anh lớp 3 (68)
  • Giải SGK Tiếng Anh lớp 4 (68)
  • Giải SGK Toán 3 (77)
  • Giáo dục (178)
  • Học tiếng Anh (105)
  • Lập trình HTML và CSS (83)
  • Lập trình Java (110)
  • Nghe Nhạc (1)
  • Tiếng Anh lớp 1 Macmillan (24)
  • Tiếng Anh lớp 2 Macmillan (23)
  • Tiếng Việt lớp 5 sách VNEN (105)

Copyright © 2021 · Hocz.Net.
Hoc Tap vn - Học Trắc nghiệm - Học Giải - Môn Toán - Sách toán - eBook Toán - Giai Bai tap hay - Lop 12