• Skip to main content
  • Bỏ qua primary sidebar
  • Môn Văn
  • Học tiếng Anh
  • CNTT
  • Sách Giáo Khoa
  • Tư liệu học tập Tiểu học

Học hỏi Net

Mạng học hỏi cho học sinh và cuộc sống

Bạn đang ở:Trang chủ / Lý thuyết Toán 10 - KNTT / Lý thuyết Bài 22: Ba đường conic – KNTT

Lý thuyết Bài 22: Ba đường conic – KNTT

25/07/2022 by Minh Đạo Để lại bình luận

Tóm tắt lý thuyết

1.1. Elip

Cho hai điểm cố định và phân biệt \({F_1},{F_2}\). Đặt \({F_1}{F_2} = 2c > 0\). Cho số thá»±c a lớn hÆ¡n c. Tập hợp các điểm M sao cho \(M{F_1} + M{F_2} = 2a\) Ä‘ược gợi là Ä‘ường elip (hay elip). Hai điểm \({F_1},{F_2}\) được gọi là hai tiêu điểm và \({F_1}{F_2} = 2c\) Ä‘ược gợi là tiêu cá»± cá»§a elip đó. 

Ví dụ: Cho lục giác đều ABCDEF. Chứng minh rằng bồn điểm B, C, E, F cùng thuộc một elip có hai tiêu điểm là A và D.

Giải

Lục giác đều ABCDEF có các cạnh bằng nhau và các góc đều có số đo là 1200 . Do đó, các tam giác ABC, BCD, DEF, EFA bằng nhau (c.g.c). Suy ra AC= BD= DF= AE.

Từ đó, ta có BA + BD= CA + CD= EA + ED= FA + FD > AD.

Vậy B, C. E, F cùng thuộc một elip có hai tiêu điểm là A và D.

Trong mặt phẳng toạ độ Oxy, elip có hai tiêu điểm thuộc trục hoành sao cho O là trung điềm của đoạn nối hai tiêu điểm đó, thì có phương trình

\(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) với \(a > b > 0\).             (2)

Ngược lại, mỗi phương trình có dạng (2), với a > b > 0, đều là phương trình cá»§a elip có hai tiêu điểm \({F_1}\left( { – \sqrt {{a^2} – {b^2}} ;0} \right),{F_2}\left( {\sqrt {{a^2} – {b^2}} ;0} \right)\), tiêu cá»± \(2c = 2\sqrt {{a^2} – {b^2}} \) và tổng các khoảng cách từ mỗi điểm thuộc elip đó tới hai tiêu điểm bằng 2a.

Phương trinh (2) được gọi là phương trình chính tắc cá»§a elip tương ứng.

Vi dụ: Cho elip có phương trình chính tắc \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1\). Tìm các tiêu điểm và tiêu cá»± cá»§a elip. Tính tổng các khoảng cách từ mỗi điểm trên elip tới hai tiêu điểm.

Giải

Ta có: a2 = 25, b2 = 16. Do đó \(c = \sqrt {{a^2} – {b^2}}  = 3\). Vậy elip có hai tiêu điểm là \({F_1}\left( { – 3;0} \right);{F_2}\left( {3;0} \right)\) và tiêu cá»± là \({F_1}{F_2} = 2c = 6\). Ta có \(a = \sqrt {25}  = 5\), nên tổng các khoảng cách từ mỗi điểm trên elip tới hai tiêu điểm bằng 2a= 10.

1.2. Hypebol

Cho hai điểm phân biệt có định \({F_1}\) và \({F_2}\). Đặt \({F_1}{F_2} = 2c\). Cho số thá»±c dương a nhỏ hÆ¡n c. Tập hợp các điểm M sao cho \(\left| {M{F_1} – M{F_2}} \right| = 2c\) Ä‘ược gọi là Ä‘ường hypebol (hay hypebol). Hai điểm \({{F_1},{F_2}}\) Ä‘ược gọi là hai tiêu điểm và \({F_1}{F_2} = 2c\) Ä‘ược gọi là
tiêu cá»± cá»§a hypebol đó. 

Chú ý: Hypebol có hai nhánh (Hình cho dưới), một nhánh gồm những điểm M thoả mãn MEF,~ ME, =2a và nhánh còn lại gồm những điểm M thoả mãn \(M{F_1} – M{F_2} =  – 2a\) (hay \(M{F_2} – M{F_1} = 2a\))

Ví dụ: Trên biển có hai đảo hình tròn với bán kính khác nhau. Tại vùng biển giữa hai đảo đó, người ta xác định một đường ranh giới cách đều hai đảo, tức là, đường mà khoảng cách từ mỗi vị trí trên đó đến hai đảo là bằng nhau. Hỏi đường ranh giới đó có thuộc một nhánh của một hypebol hay không?

Chú ý: Khoảng cách từ một vị trí trên biển đến đảo hinh tròn bằng hiệu của khoảng cách từ
vị trí đó đến tâm đảo và bán kính của đảo.

Giải

Giả sá»­ đảo thứ nhất có tâm \({O_1}\) và bán kính \({R_1}\), Ä‘ảo thứ hai có tâm \({O_2}\) và bán kinh \({R_2}\). Do hai đường
tròn \(\left( {{O_1};{R_1}} \right),\left( {{O_2};{R_2}} \right)\) nằm ngoài nhau nên \({O_1}{O_2} > {R_1} + {R_2}\). 

Gọi M là một điểm bất kì thuộc đường ranh giới.

Vì M cách đều hai đảo nên

\(M{O_1} – {R_1} = M{O_2} – {R_2} \Leftrightarrow M{O_1} – M{O_2} = {R_1} – {R_2}.\)

Vậy đường ranh giới thuộc một nhánh cá»§a hypebol với tiêu điểm \({F_1}\) trùng \({O_1}\), \({F_2}\) trùng \({O_2}\), \(2c = {O_1}{O_2},2{\rm{a}} = \left| {{R_1} – {R_2}} \right|.\) 

Trong mặt phẳng toạ độ Oxy, hypebol có hai tiêu điểm thuộc trục hoành sao cho O là trung điểm cá»§a đoạn nối hai tiêu điểm đó, thì có phương trình

\(\frac{{{x^2}}}{{{a^2}}} – \frac{{{y^2}}}{{{b^2}}} = 1\) với \(a,b > 0\).      (4)

Ngược lại, mỗi phương trình có dạng (4), với a, b >0, đều là phương trình cá»§a hypebol có hai tiêu điểm \({F_1}\left( { – \sqrt {{a^2} + {b^2}} ;0} \right),{F_2}\left( {\sqrt {{a^2} + {b^2}} ;0} \right)\), tiêu cá»± \(2c = 2\sqrt {{a^2} + {b^2}} \) và giá trị tuyệt đối cá»§a hiệu các khoảng cách từ mối điểm thuộc hypebol đến hai tiêu điểm bằng 2a.

Phương trình (4) được gọi là phương trình chính tắc cá»§a hypebol tương ứng.

Ví dụ: Cho hypebol có phương trình chính tắc \(\frac{{{x^2}}}{9} – \frac{{{y^2}}}{{16}} = 1\). Tìm các tiêu điểm và tiêu cá»± cá»§a hypebol. Hiệu các khoảng cách từ một điểm nằm trên hypebol tới hai tiêu điểm có giá trị tuyệt đối bằng bao nhiêu?

Giải

Ta có \({a^2} = 9,{b^2} = 16\), nên \(c = \sqrt {{a^2} + {b^2}}  = 5\). Vậy hypebol có hai tiêu điểm là \({F_1}\left( { – 5;0} \right),{F_2}\left( {5;0} \right)\) và có tiêu cá»± 2c = 10. Hiệu các khoảng cách từ một điểm nằm trên hypebol tới hai tiêu điểm có giá trị tuyệt đối bằng \(2{\rm{a}} = 2\sqrt 9  = 6\).

1.3. Parabol

Cho một điểm F có định và một đường thẳng \(\Delta \) cố định không đi qua F. Tập hợp các điểm M cách đều F và \(\Delta \) được gọi là Ä‘ường parabol (hay parabol). Điểm F được gọi là tiêu điểm, \(\Delta \) được gọi là Ä‘ường chuẩn, khoảng cách từ F đến \(\Delta \) được gọi là tham số tiêu cá»§a parabol đó. 

Xét (P) là một parabol với tiêu điểm F, đường chuẩn \(\Delta \). Gọi H là hình chiếu vuông góc của F trên \(\Delta \). Khi đó, trong hệ trục toạ độ Oxy với gốc O là trung điểm của HF, tia Ox trùng tia OF, parabol (P) có phương trình

\({y^2} = 2p{\rm{x}}\) (với p > 0)        (5)

Phương trình (5) được gọi là phương trình chính tắc của parabol (P).

Ngược lại, mỗi phương trình dạng (5), với p > 0, là phương trình chính tắc cá»§a parabol có tiêu điểm \(F\left( {\frac{p}{2};0} \right)\) và đường chuẩn \(\Delta 😡 =  – \frac{p}{2}\). 

Ví dụ: Cho parabol \((P):{y^2} = x\). 

a) Tìm tiêu điểm F, đường chuẩn \(\Delta \) cá»§a (P).

b) Tìm những điểm trên (P) có khoảng cách tới F bằng 3. 

Giải

a) Ta có 2p = 1 nên \(p = \frac{1}{2}\). 

Parabol có tiêu điểm \(F\left( {\frac{1}{4};0} \right)\) và đường chuẩn \(\Delta 😡 =  – \frac{1}{4}\) 

b) Điểm \(M\left( {{x_0};{y_0}} \right)\) thuuọc (P) có khoảng các tới F bằng 3 khi và chỉ khi \({y_0}^2 = {x_0}\) và MF = 3.

Do \(MF = d\left( {M,\Delta } \right)\) nên \(d\left( {M,\Delta } \right) = 3\)

Mặt khác \(\Delta 😡 + \frac{1}{4} = 0\) và \({x_0} = {y_0}^2 \ge 0\) nên \(3 = d\left( {M,\Delta } \right) = \left| {{x_0} + \frac{1}{4}} \right| = {x_0} + \frac{1}{4}.\)

Vậy \({x_0} = \frac{{11}}{4}\) và \({y_0} = \frac{{\sqrt {11} }}{2}\) hoặc \({y_0} =  – \frac{{\sqrt {11} }}{2}\). 

Vậy có hai điểm M thoả mãn bài toán với toạ độ là \(\left( {\frac{{11}}{4};\frac{{\sqrt {11} }}{2}} \right)\) và \(\left( {\frac{{11}}{4}; – \frac{{\sqrt {11} }}{2}} \right)\). 

1.4. Một số ứng dụng của ba đường conic

a) Tính chất quang học

Tương tự gương cầu lồi thường đặt ở những khúc đường cua, người ta cũng có những gương (lồi, lõm) elip, hypebol, parabol. Tia sáng gặp các gương này, đều được phản xạ theo một quy tắc được xác định rõ bằng hình học, chẳng hạn:

+ Tia sáng phát ra từ một tiêu điểm của elip, hypebol (đối với các gương lõm elip, hypebol) sau khi gặp elip, hypebol sẽ bị hắt lại theo một tia (tia phản xạ) nằm trên đường thẳng đi qua tiêu điểm còn lại.

+ Tia sáng hướng tới một tiêu điểm cá»§a elip, hypebol (đối với các gương elip, hypebol lồi), khi gặp elip, hypebol sẽ bị hắt lại theo một tia nằm trên đường thẳng đi qua tiêu điểm còn lại. 

+ Với gương parabol lõm, tia sáng phát ra từ tiêu điểm khi gặp parabol sẽ bị hát lại theo một tia vuông góc với đường chuẩn của parabol. Ngược lại, nều tia tới vuông góc với đường chuẩn của parabol thì tia phản xạ sẽ đi qua tiêu điểm của parabol

Tính chất quang học được đề cập ở trên giúp ta nhận được ánh sáng mạnh hơn khi các tỉa sáng hội tụ và giúp †a đổi hướng ánh sáng khi cần. Ta cũng có điều tương tự đối với tin hiệu âm thanh, tín hiệu truyền từ vệ tinh.

b) Một số ứng dụng

Ba đường conic xuât hiện và có nhiêu ứng dụng trong khoa học và trong cuộc sông, chẳng hạn:

+ Tia nước bắn ra từ đài phun nước, đường đi bỗng của quả bóng là những hình ảnh về đường parabol;

+ Khi nghiêng cốc tròn, mặt nước trong cốc có hình elip. Tương tự, dưới ánh sáng mặt trời, bóng của một quả bóng, nhìn chung, là một elip;

+ Ánh sáng phát ra từ một bóng đèn Led trên trằn nhà có thể tạo nên trên tường các nhánh hypebol;

+ Nhiều công trình kiến trúc có hình elip, parabol hay hypebol.

……

Bài tập minh họa

Câu 1: Trên bàn bida hình elip có một lỗ thu bi tại một tiêu điểm. Nếu gậy chÆ¡i tác động đủ mạnh vào một bi đặt tại tiêu điểm còn lại cá»§a bàn, thì sau khi va vào thành bàn, bi sẽ bật lại và chạy về lỗ thu (bỏ qua các tác động phụ). Hỏi độ dài quãng đường bi lăn từ điểm xuất phát tới lỗ thu có phụ thuộc vào đường đi cá»§a bi hay không? Vì sao?

Hướng dẫn giải

Ta có vị trí ban đầu cá»§a bi và vị trí cá»§a lỗ thu là 2 tiêu điểm cá»§a hình elip, gọi lần lượt là F1 và F2. Bi lăn từ F1 Ä‘ến một vị trí M trên hình elip rồi đi đến F2. Vậy quãng đường bi đi được là: MF1+ MF2 

Theo tính chất hình elip thì MF1+ MF2 = 2a, không đổi

Suy ra độ dài quãng đường bi lăn từ điểm xuất phát tới lỗ thu không phụ thuộc vào đường đi của bi.

Câu 2: Cho hình chữ nhật ABCD và M, N tương ứng là trung điểm cá»§a các cạnh AB, CD. Chứng minh rằng bốn điểm A, B, C, D cùng thuộc một hypebol có hai tiêu điểm là M và N.

Hướng dẫn giải

Do M, N tương ứng là trung điểm của các cạnh AB, CD và tính chất hình chữ nhật ABCD ta có: BM = CN = AM = DN và BN = CM = AN = DM.

Từ đó: |BN – BM| = |CN – CM| = |AN – AM| = |DN – DM| > MN (bất đẳng thức tam giác).

Vậy A, B, C, D cùng thuộc một hypebol có hai tiêu điểm là M và N.

Thuộc chủ đề:Lý thuyết Toán 10 - KNTT

Bài liên quan:

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

Bài viết mới

  • Giải bài 8 trang 93 SGK Toán 10 Chân trời sáng tạo tập 1 13/08/2022
  • Giải bài 8 trang 93 SGK Toán 10 Chân trời sáng tạo tập 1 13/08/2022
  • Giải bài 7 trang 93 SGK Toán 10 Chân trời sáng tạo tập 1 13/08/2022
  • Giải bài 6 trang 93 SGK Toán 10 Chân trời sáng tạo tập 1 13/08/2022
  • Giải bài 5 trang 93 SGK Toán 10 Chân trời sáng tạo tập 1 13/08/2022




Chuyên mục

Copyright © 2022 · Hocz.Net. Giới thiệu - Liên hệ - Bảo mật - Sitemap.
Học Trắc nghiệm - Lam Van hay - Môn Toán - Sách toán - Hocvn Quiz - Giai Bai tap hay - Lop 12 - Hoc giai