• Skip to main content
  • Bỏ qua primary sidebar
  • Môn Văn
  • Học tiếng Anh
  • CNTT
  • Sách Giáo Khoa
  • Tư liệu học tập Tiểu học

Học hỏi Net

Mạng học hỏi cho học sinh và cuộc sống

Bạn đang ở:Trang chủ / Lý thuyết Toán 10 - KNTT / Lý thuyết Bài 26: Biến cố và định nghĩa cổ điển của xác suất – KNTT

Lý thuyết Bài 26: Biến cố và định nghĩa cổ điển của xác suất – KNTT

25/07/2022 by Minh Đạo Để lại bình luận

Tóm tắt lý thuyết

1.1. Biến cố

Ở lớp 9 ta đã biết những khái niệm quan trọng sau:

+ Phép thá»­ ngấu nhiên (gọi tắt là phép thá»­) là một thí nghiệm hay một hành động mà kết quả cá»§a nó không thể biết được trước khi phép thá»­ được thá»±c hiện. 

+ Không gian mẫu cá»§a phép thá»­ là tập hợp tất cả các kết quả có thể khi thá»±c hiện phép thá»­ Không gian mẫu cá»§a phép thá»­ được kí hiệu là \(\Omega \).

+ Kết quả thuận lợi cho một biến cố E liên quan tới phép thá»­ T là kết quả cá»§a phép thá»­ T làm cho biến cố đó xảy ra.

Chú ý: Ta chỉ xét các phép thử mà không gian mẫu gồm hữu hạn kết quả.

Ví dụ 1: Một tổ trong lớp 10A có ba học sinh nữ là Hương, Hồng, Dung và bồn học sinh nam là Sơn, Tùng, Hoàng, Tiến. Giáo viên chọn ngẫu nhiên một học sinh trong tổ đó để kiểm tra vở bài tập. Phép thử ngẫu nhiên là gỉ? Mô tả không gian mẫu.

Giải

Phép thử ngẫu nhiên là chọn ngẫu nhiên một học sinh trong tổ đẻ kiểm tra vở bài tập.

Không gian mẫu là tập hợp tất cà các học sinh trong tổ.

Ta có \(\Omega \) = (Hương; Hồng: Dung; SÆ¡n; Tùng, Hoàng; Tiến).

* Theo định nghÄ©a, ta thấy mỗi kết quả thuân lợi cho biến cố E chính là một phần tá»­ thuộc không gian mẫu \(\Omega \). Do đó về mặt toán học, ta có:

Mỗi biến cố là một tập con cá»§a không gian mẫu \(\Omega \). Tập con này là tập tất cae các kết quả thuận lợi cho biến cố đó. 

Nhận xét: Biến cố chắc chắn là tập \(\Omega \), biến cố không thể là tập \(\emptyset \). 

Biến cố đối cá»§a biến cố E là biến cố “E không xảy ra”. Biến cố đối cá»§a E được kí hiệu là \(\overline E \). 

Nhận xét: Nếu biến cố E là tập con cá»§a không gian mẫu \(\Omega \) thì biến cố đối \(\overline E \) là tập tất cả các phần tá»­ cá»§a \(\Omega \) mà không là phần tá»­ cá»§a E. Vậy biến cố \(\overline E \) là phần bù cá»§a E trong \(\Omega :\overline E  = {C_\Omega }E\). 

Ví dụ: Gieo một con xúc xắc 6 mặt và quan sát số chấm xuất hiện trên con xúc xắc.

a) Mô tà không gian mẫu.

b) Gọi M là biến cổ: “Số chấm xuất hiện trên con xúc xắc lả một số chẵn”. Nội dung biến cố đối \(\overline M \) cá»§a M là gì?

c) Biến cố M và \(\overline M \) là tập con nào cá»§a không gian mẫu?

Giải

a) Không gian mẫu \(\Omega \) = {1: 2; 3: 4; 5; 6).

b) Biến cố đối \(\overline M \) cá»§a Mà biến có: “Số chấm xuất hiện trên con xúc xắc là một số lẻ”

c) Ta có \(M = \left\{ {2;4;6} \right\} \subset \Omega ;\overline M  = {C_\Omega }M = \left\{ {1;3;5} \right\} \subset \Omega \). 

1.2. Định nghĩa cổ điển của xác suất

Ta đã biết không gian mẫu \(\Omega \) cá»§a phép thá»­ T là tập hợp tất cả các kết quả có thể cá»§a T, biến có E liên quan đến phép thá»­ T là tập con cá»§a \(\Omega \). Vì thế số kết quả có thể cá»§a phép thá»­ T chính là số phần tá»­ tập \(\Omega \); số kết quả thuận lợi cá»§a biến cố E chính là số phản tá»­ cá»§a tập E. Do đó, ta có định nghÄ©a cổ điển cá»§a xác suất như sau:

Cho phép thá»­ T có không gian mẫu là \(\Omega \). Giả thiết rằng các kết quả có thể cá»§a T là đồng khả năng. Khi đó nếu E là một biến cổ liên quan đến phép thá»­ T thì xác suất cá»§a E được cho bởi công thức

\(P\left( E \right) = \frac{{n\left( E \right)}}{{n\left( \Omega  \right)}}\). 

trong đỏ \({n\left( \Omega  \right)}\) và \({n\left( E \right)}\) tương ứng là số phần tá»­ cá»§a tập \(\Omega \) và tập E.

Nhận xét

+ Với mỗi biến cố E, ta có \(0 \le P\left( E \right) \le 1\). 

+ Với biến cố chắc chắn (lả tập \(\Omega \)), ta có P(\(\Omega \)) = 1.

+ Với biến cố không thể (lả tập \(\emptyset \) ), ta có P(\(\emptyset \)) = 0.

Ví dụ: Hai túi I và II chứa các tấm thẻ được đánh số. Túi I: (1; 2; 3; 4; 6}, túi II: {1; 2; 3; 4}. Rút ngẫu nhiên một tấm thẻ từ mỗi túi I và II. Tỉnh xác suất để tổng hai số trên hai tấm thẻ lớn hơn 6.

Giải

Mô tả không gian mẫu \(\Omega \) bằng cách lập bảng như sau.

Mỗi ô là một kết quả có thể. Có 20 ô, vậy n(\(\Omega \)) = 20.

Biến cố E: “Tổng hai số trên hai tắm thẻ lớn hÆ¡n 6” xảy ra khi tổng là một trong ba trường hợp

Tổng bằng 7 gồm các kết quả: (3, 4); (4, 3); (5. 2).

Tổng bằng 8 gồm các kết quả: (4, 4); (5, 3).

Tổng bằng 9 có một kết quả: (5, 4). 

Vậy biến cố E = ((3, 4); (4, 3); (5, 2); (4, 4); (5, 3); (5, 4)). Từ đó \(n\left( E \right) = 6\) và \(P\left( E \right) = \frac{6}{{20}} = \frac{3}{{10}} = 0,3\)

Chú ý: Trong những phép thá»­ đơn giản, ta đếm số phần tá»­ cá»§a tập \(\Omega \) và số phần tá»­ cá»§a biến cố E bằng cách liệt kê ra tất cả accs phần tá»­ cá»§a hai tập hợp này. 

1.3. Nguyên lí xác suất bé

Qua thực tế người ta thấy rằng một biến cố có xác suất rất bé thì sẽ không xảy ra khi ta thực hiện một phép thử hay một vài phép thử. Từ đó người ta đã thừa nhận nguyên lí sau đây gọi là nguyên lí xác suất bé:

Nếu một biến có có xác suắt rất bé thì trong một phép thá»­ biến cố đó sẽ không xảy ra. 

Chẳng hạn, xác suất một chiếc máy bay rÆ¡i là rất bẻ, khoảng 0,00000027. Mỗi hành khách khi đi máy bay đều tin rằng biến cố: “Máy bay rÆ¡i” sẽ không xảy ra trong chuyến bay cá»§a mình, do đó người ta vẫn không ngân ngại đi máy bay.

Chú ý: Trong thực tế, xác suất của một biến cố được coi là bé phụ thuộc vào từng trường hợp cụ thể. Chẳng hạn, xác suất một chiếc điện thoại bị lối kĩ thuật là 0,001 được coi là rất bé, nhưng nếu xác suất cháy nỗ động cơ của một máy bay là 0,001 thỉ xác suất này không được coi là rất bé.

Bài tập minh họa

Câu 1: Gieo một con xúc xắc. Gọi K là biến cố: “Số chấm xuất hiện trên con xúc xắc là một số nguyên tố”.

a. Biến cố: “Số chấm xuất hiện trên con xúc xắc là một hợp số” có là biến cố \(\overline{K}\) không?

b. Biến cố K và \(\overline{K}\) là tập con nào của không gian mẫu?

Hướng dẫn giải

a. Biến cố: “Số chấm xuất hiện trên con xúc xắc là một hợp số” không là biến cố \(\overline{K}\), vì nếu K không xảy ra, tức là số chấm không là số nguyên tố, thì số chấm cá»§a xúc xắc có thể là số 1 hoặc hợp số. (số 1 không phải là số nguyên tố, không phải là hợp số).

b. Ta có:

Biến cố \(\overline{K}\): “Số chấm xuất hiện trên con xúc xắc là 1 hoặc là một hợp số”.

K = {2; 3; 5}

\(\overline{K}\) = {1; 4; 6}.

Câu 2: Gieo đồng thời hai con xúc xắc cân đối. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 4 hoặc bằng 6.

Hướng dẫn giải

Vì mỗi con xúc xắc có thể xuất hiện 1 trong 6 mặt, nên số khả năng có thể xảy ra khi gieo 2 xúc xăc là: \(n(\Omega )=6^{2}=36\).

Biến cố E: ‘”Tổng số chấm xuất hiện trên hai con xúc xắc bằng 4 hoặc bằng 6″.

Tổng số chấm bằng 4 gồm các kết quả: (1; 3), (3; 1), (2; 2).

Tổng số chấm bằng 6 gồm các kết quả: (1; 5), (5; 1), (2; 4), (4; 2), (3; 3)

\(\Rightarrow\) Biến cố E có 8 phần tử, hay n(E) = 8.

Vậy P(E) = \(\frac{8}{36}=\frac{2}{9}\).

Thuộc chủ đề:Lý thuyết Toán 10 - KNTT

Bài liên quan:

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

Bài viết mới

  • Giải bài 7 trang 48 SGK Toán 10 Chân trời sáng tạo tập 1 10/08/2022
  • Giải bài 6 trang 48 SGK Toán 10 Chân trời sáng tạo tập 1 10/08/2022
  • Giải bài 5 trang 48 SGK Toán 10 Chân trời sáng tạo tập 1 10/08/2022
  • Giải bài 4 trang 47 SGK Toán 10 Chân trời sáng tạo tập 1 10/08/2022
  • Giải bài 3 trang 47 SGK Toán 10 Chân trời sáng tạo tập 1 10/08/2022




Chuyên mục

Copyright © 2022 · Hocz.Net. Giới thiệu - Liên hệ - Bảo mật - Sitemap.
Học Trắc nghiệm - Lam Van hay - Môn Toán - Sách toán - Hocvn Quiz - Giai Bai tap hay - Lop 12 - Hoc giai