LÝ THUYẾT TÓM TẮT
1.1. Định nghĩa
Giả sử hàm số \(y = f(x)\) có đạo hàm \(y’ = f'(x)\) tại mọi điểm \(x \in (a ; b)\). Nếu hàm số \(y’ = f'(x)\) tiếp tục có đạo hàm tại x thì ta gọi đạo hàm của y‘ tại x là đạo hàm cấp hai của hàm số \(y = f(x)\) tại x, kí hiệu là y” hoặc f”(x). |
1.2. Ý nghĩa cơ học của đạo hàm cấp hai
Tổng quát
Đạo hàm cấp hai \(s”(t)\) là gia tốc tức thời của chuyển động \(s = s(t)\) tại thời điểm t. |
===========
VÍ DỤ MINH HỌA
Tính đạo hàm cấp hai của các hàm số sau:
a) \(f(x) = {(2x – 3)^5}.\)
b) \(f(x) = \frac{{{x^2} + x + 1}}{{x + 1}}\).
c) \(f(x) = x\sqrt {1 + {x^2}} .\)
Hướng dẫn giải
a) Ta có:
\(f'(x) =\left [ \left ( 2x-3 \right )^5 \right ]’= 5.(2x – 3)'{(2x – 3)^4} = 10{(2x – 3)^4}.\)
\(f”(x) = \left[ {10{{\left( {2x – 3} \right)}^4}} \right]’ = 10.4.(2x – 3)'(2x – 3) = 80{(2x – 3)^3}.\)
b) Ta có:
\(f(x) = \frac{{{x^2} + x + 1}}{{x + 1}} = x + \frac{1}{x}\)
\(f'(x) = \left( {x + \frac{1}{x}} \right)’ = 1 – \frac{1}{{{{(x + 1)}^2}}}.\)
\(f”(x) = \left[ {1 – \frac{1}{{{{(x + 1)}^2}}}} \right]’ = \frac{2}{{{{(x + 1)}^3}}}.\)
c) Ta có:
\(f'(x) = \left( {x\sqrt {1 + {x^2}} } \right)’ = \sqrt {1 + {x^2}} + \frac{{{x^2}}}{{\sqrt {1 + {x^2}} }} = \frac{{2{x^2} + 1}}{{\sqrt {1 + {x^2}} }}.\)
\(\begin{array}{l} f”(x) = \left[ {\frac{{2{x^2} + 1}}{{\sqrt {1 + {x^2}} }}} \right]’ = \frac{{(2{x^2} + 1)’\sqrt {1 + {x^2}} – \left( {2{x^2} + 1} \right)\left( {\sqrt {1 + {x^2}} } \right)’}}{{{{\left( {\sqrt {1 + {x^2}} } \right)}^2}}}\\ = \frac{{4x\sqrt {1 + {x^2}} – \left( {2{x^2} + 1} \right)\frac{x}{{\sqrt {1 + {x^2}} }}}}{{{{\left( {\sqrt {1 + {x^2}} } \right)}^2}}} = \frac{{4x({x^2} + 1) – x(2{x^2} + 1)}}{{(1 + {x^2})\sqrt {1 + {x^2}} }}\\ = \frac{{2{x^3} + 3x}}{{(1 + {x^2})\sqrt {1 + {x^2}} }}. \end{array}\)
================= HOCZ.NET ============
Để lại một bình luận