• Skip to main content
  • Bỏ qua primary sidebar
  • Môn Văn
  • Học tiếng Anh
  • CNTT
  • Sách Giáo Khoa
  • Tư liệu học tập Tiểu học
  • Nghe Nhạc

Học hỏi Net

Mạng học hỏi cho học sinh và cuộc sống

Bạn đang ở:Trang chủ / [Sách chân trời] Giải SGK Toán 10 / Giải bài 2 trang 58 SBT Toán 10 Chân trời sáng tạo tập 1 – CTST

Giải bài 2 trang 58 SBT Toán 10 Chân trời sáng tạo tập 1 – CTST

28/02/2023 by Minh Đạo Để lại bình luận

Khi một vật từ vị trí \({y_0}\) được ném xiên lên cao theo góc \(\alpha \) (so với phương ngang) với vận tốc ban đầu \({v_0}\) thì phương trình chuyển động của vật này là:

                 \(y = \frac{{ – g{x^2}}}{{2v_0^2{{\cos }^2}\alpha }} + \tan \alpha .x + {y_0}\)

a) Vật bị ném xiên như vậy có chuyển động theo đường xiên không? Tại sao?

b) Giả sử góc ném có số đo là \(45^\circ \), vận tốc ban đầu của vật là \(3\)m/s và vật được ném xiên từ độ cao 1 m so với mặt đất, hãy viết phương trình chuyển động của vật

c) Một vận động viên ném lao đã lập kỉ lục với độ xa 90 m. Biết người này ném lao từ độ cao 0,9 m và góc ném là khoảng \(45^\circ \). Hỏi vận tốc đầu của lao khi được ném đi là bao nhiêu?

(Lưu ý: Lấy giá trị \(g = 10\) m/s2 cho gia tốc trọng trường và làm tròn kết quả đến 2 chữ số thập phân)

Hướng dẫn giải chi tiết Bài 2

Phương pháp giải

a) Xác định phương trình chuyển động của vật

b) Theo giả thiết ta xác định được: \(\alpha  = 45^\circ ,{v_0} = 3,{y_0} = 1,g = 10\). Thay vào phương trình chuyển động

c) Theo giả thiết ta có phương trình sau:

\(y = \frac{{ – 10{x^2}}}{{2v_0^2{{\cos }^2}45}} + \tan 45.x + 0,9 = \frac{{ – 10{x^2}}}{{v_0^2}} + x + 0,9\) (*)

Xác định x, y khi biết rằng vận động viên ném lao lập kỉ lục cao nhất là 90 m, suy ra khi đạt độ dài kỉ lục thì lao vừa rơi xuống, tức khi \(x = 90\) thì \(y = 0\). Thay x, y vào phương trình (*) 

Lời giải chi tiết

a) Ta có phương trình chuyển động của vật trên là \(y = \frac{{ – g{x^2}}}{{2v_0^2{{\cos }^2}\alpha }} + \tan \alpha .x + {y_0}\), trong khi đó chúng ta biết g (gia tốc trọng trường)… và các yếu tố khác nên khi thay các giá trị đấy vào phương trình có dạng phương trình bậc hai, nên đồ thị biểu diễn quỹ đạo chuyển động có hình dáng của parabol nên nó không thể là đường xiên

b) Theo giả thiết ta xác định được: \(\alpha  = 45^\circ ,{v_0} = 3,{y_0} = 1,g = 10\)

Thay vào phương trình chuyển động ta có:

\(\begin{array}{l}y = \frac{{ – g{x^2}}}{{2v_0^2{{\cos }^2}\alpha }} + \tan \alpha .x + {y_0} = \frac{{ – 10{x^2}}}{{{{2.3}^2}{{\cos }^2}45}} + \tan 45.x + 1\\ =  – \frac{{10}}{9}{x^2} + x + 1\end{array}\)

c) Theo giả thiết ta có phương trình sau:

\(y = \frac{{ – 10{x^2}}}{{2v_0^2{{\cos }^2}45}} + \tan 45.x + 0,9 = \frac{{ – 10{x^2}}}{{v_0^2}} + x + 0,9\) (*)

Ta biết rằng vận động viên ném lao lập kỉ lục cao nhất là 90 m, suy ra khi đạt độ dài kỉ lục thì lao vừa rơi xuống, tức khi \(x = 90\) thì \(y = 0\)

Thay vào phương trình (*) ta có:

\(y = \frac{{ – 10{x^2}}}{{v_0^2}} + x + 0,9 \Leftrightarrow 0 = \frac{{ – {{10.90}^2}}}{{v_0^2}} + 90 + 0,9 \Leftrightarrow v_0^2 = \frac{{81000}}{{90,9}}\)

Vì \({v_0} > 0\), suy ra \({v_0} = \sqrt {\frac{{81000}}{{90,9}}}  \simeq 29,85\) (m/s)

Vậy vận tốc ban đầu của lao để đạt được kỷ lục theo các yếu tố đã cho là gần bằng 29,85 m/s

— *****

Thuộc chủ đề:[Sách chân trời] Giải SGK Toán 10 Tag với:Giải bài tập Toán 10 Chân trời sáng tạo Bài tập cuối chương 3

Bài liên quan:

  1. Giải bài 1 trang 56 SBT Toán 10 Chân trời sáng tạo tập 1 – CTST
  2. Giải bài 2 trang 56 SBT Toán 10 Chân trời sáng tạo tập 1 – CTST
  3. Giải bài 3 trang 56 SBT Toán 10 Chân trời sáng tạo tập 1 – CTST
  4. Giải bài 4 trang 56 SBT Toán 10 Chân trời sáng tạo tập 1 – CTST
  5. Giải bài 5 trang 57 SBT Toán 10 Chân trời sáng tạo tập 1 – CTST
  6. Giải bài 6 trang 57 SBT Toán 10 Chân trời sáng tạo tập 1 – CTST
  7. Giải bài 7 trang 57 SBT Toán 10 Chân trời sáng tạo tập 1 – CTST
  8. Giải bài 8 trang 57 SBT Toán 10 Chân trời sáng tạo tập 1 – CTST
  9. Giải bài 9 trang 57 SBT Toán 10 Chân trời sáng tạo tập 1 – CTST
  10. Giải bài 10 trang 57 SBT Toán 10 Chân trời sáng tạo tập 1 – CTST
  11. Giải bài 1 trang 58 SBT Toán 10 Chân trời sáng tạo tập 1 – CTST

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

Bài viết mới

  • Đề thi giữa HK2 môn Địa lí 12 năm 2022-2023 Trường THPT Lê Trung Kiên 21/03/2023
  • Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2022-2023 Trường THPT Hàm Long Lần 1 20/03/2023
  • Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2022-2023 Trường THPT Phan Châu Trinh 19/03/2023
  • Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2022-2023 Trường THPT Bùi Thị Xuân 19/03/2023
  • Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2022-2023 Trường THPT Trần Hữu Trang 19/03/2023




Chuyên mục

Copyright © 2023 · Hocz.Net. Giới thiệu - Liên hệ - Bảo mật - Sitemap.
Học Trắc nghiệm - Giao Vien VN - Môn Toán - Sách toán - QAz Do - Hoc tot hon - Lop 12 - Hoc giai