• Skip to main content
  • Bỏ qua primary sidebar
  • Môn Văn
  • Học tiếng Anh
  • CNTT
  • Sách Giáo Khoa
  • Tư liệu học tập Tiểu học
  • Nghe Nhạc

Học hỏi Net

Mạng học hỏi cho học sinh và cuộc sống

Bạn đang ở:Trang chủ / [Sách chân trời] Giải SGK Toán 10 / Giải bài 2 trang 79 SBT Toán 10 Chân trời sáng tạo tập 1 – CTST

Giải bài 2 trang 79 SBT Toán 10 Chân trời sáng tạo tập 1 – CTST

28/02/2023 by Minh Đạo Để lại bình luận

Tính các góc chưa biết của tam giác ABC trong các trường hợp sau:

a) \(\widehat A = 42^\circ ,\widehat B = 63^\circ \)

b) \(BC = 10,AC = 20,\widehat C = 80^\circ \)

c) \(AB = 15,AC = 25,BC = 30\)

Hướng dẫn giải chi tiết Bài 2

Phương pháp giải

a) Sử dụng tính chất trong tam giác \(\widehat A + \widehat B + \widehat C = 180^\circ \)

b) Bước 1: Sử dụng định lí côsin xác định cạnh AB

Bước 2: Sử dụng định lí sin xác định các góc

c) Sử dụng hệ quả của định lí côsin xác định các góc tròn tam giác

Lời giải chi tiết

a) Ta có \(\widehat A + \widehat B + \widehat C = 180^\circ \)

Suy ra: \(\widehat C = 180^\circ  – \left( {\widehat A + \widehat B} \right) = 180^\circ  – \left( {42^\circ  + 63^\circ } \right) = 75^\circ \)

b) Áp dụng định lí côsin ta có:

\(\begin{array}{l}{a^2} = {b^2} + {c^2} – 2bc\cos A\\ \Leftrightarrow A{B^2} = B{C^2} + A{C^2} – 2.BC.AC.\cos C\\ \Rightarrow AB = \sqrt {B{C^2} + A{C^2} – 2.BC.AC.\cos C}  = \sqrt {{{10}^2} + {{20}^2} – 2.10.20.\cos 80}  \simeq 20,75\end{array}\)

Áp dụng định lí sin ta có:

\(\begin{array}{l}\frac{{AB}}{{\sin C}} = \frac{{AC}}{{\sin B}} = \frac{{BC}}{{\sin A}} = \frac{{20,75}}{{\sin 80}}\\ \Rightarrow \left\{ \begin{array}{l}\sin B \simeq 0,95\\\sin A \simeq 0,48\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\widehat B \simeq 71^\circ 40’\\\widehat A \simeq 28^\circ 20’\end{array} \right.\end{array}\)

c) Áp dụng hệ quả của định lí côsin ta có:

\(\begin{array}{l}\cos A = \frac{{{b^2} + {c^2} – {a^2}}}{{2bc}} = \frac{{{{25}^2} + {{15}^2} – {{30}^2}}}{{2.25.15}} =  – \frac{1}{{15}} \Rightarrow \widehat A \simeq 93^\circ 49’\\\cos B = \frac{{{a^2} + {c^2} – {b^2}}}{{2ac}} = \frac{{{{30}^2} + {{15}^2} – {{25}^2}}}{{2.30.15}} = \frac{5}{9} \Rightarrow \widehat B \simeq 56^\circ 15’\\\cos C = \frac{{{a^2} + {b^2} – {c^2}}}{{2ab}} = \frac{{{{30}^2} + {{25}^2} – {{15}^2}}}{{2.30.25}} = \frac{{13}}{{15}} \Rightarrow \widehat C \simeq 29^\circ 56’\end{array}\) 

— *****

Thuộc chủ đề:[Sách chân trời] Giải SGK Toán 10 Tag với:Giải bài tập Toán 10 Chân trời sáng tạo Chương 4 Bài 3

Bài liên quan:

  1. Giải bài 1 trang 79 SBT Toán 10 Chân trời sáng tạo tập 1 – CTST
  2. Giải bài 3 trang 79 SBT Toán 10 Chân trời sáng tạo tập 1 – CTST
  3. Giải bài 4 trang 79 SBT Toán 10 Chân trời sáng tạo tập 1 – CTST
  4. Giải bài 5 trang 79 SBT Toán 10 Chân trời sáng tạo tập 1 – CTST
  5. Giải bài 6 trang 79 SBT Toán 10 Chân trời sáng tạo tập 1 – CTST

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

Bài viết mới

  • Đề thi giữa HK2 môn Địa lí 12 năm 2022-2023 Trường THPT Lê Trung Kiên 21/03/2023
  • Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2022-2023 Trường THPT Hàm Long Lần 1 20/03/2023
  • Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2022-2023 Trường THPT Phan Châu Trinh 19/03/2023
  • Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2022-2023 Trường THPT Bùi Thị Xuân 19/03/2023
  • Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2022-2023 Trường THPT Trần Hữu Trang 19/03/2023




Chuyên mục

Copyright © 2023 · Hocz.Net. Giới thiệu - Liên hệ - Bảo mật - Sitemap.
Học Trắc nghiệm - Giao Vien VN - Môn Toán - Sách toán - QAz Do - Hoc tot hon - Lop 12 - Hoc giai