• Skip to main content
  • Bỏ qua primary sidebar
  • Môn Văn
  • Học tiếng Anh
  • CNTT
  • Sách Giáo Khoa
  • Tư liệu học tập Tiểu học
  • Nghe Nhạc

Học hỏi Net

Mạng học hỏi cho học sinh và cuộc sống

Bạn đang ở:Trang chủ / [Sách chân trời] Giải SGK Toán 10 / Giải bài 3 trang 101 SBT Toán 10 Chân trời sáng tạo tập 1 – CTST

Giải bài 3 trang 101 SBT Toán 10 Chân trời sáng tạo tập 1 – CTST

01/03/2023 by Minh Đạo Để lại bình luận

Cho nửa đường tròn tâm O có đường kính \(AB = 2R\). Gọi M và N là hai điểm thuộc nửa đường tròn sao cho AM  và BN cắt nhau tại I như hình 5.

a) Chứng minh: \(\overrightarrow {AI} .\overrightarrow {AM}  = \overrightarrow {AI} .\overrightarrow {AB} ;\overrightarrow {BI} .\overrightarrow {BN}  = \overrightarrow {AB} .\overrightarrow {BA} \)

b) Tính \(\overrightarrow {AI} .\overrightarrow {AM}  + \overrightarrow {BI} .\overrightarrow {BN} \) theo R

Hướng dẫn giải chi tiết Bài 3

Phương pháp giải

Tích vô hướng của hai vecto \(\overrightarrow u ,\;\overrightarrow v \): \(\overrightarrow u .\;\overrightarrow v  = \left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right|.\cos \;\left( {\overrightarrow u ,\;\overrightarrow v } \right)\)

Lời giải chi tiết

a) Ta có:

\(\begin{array}{l}\overrightarrow {AI} .\overrightarrow {AM}  = \left| {\overrightarrow {AI} } \right|.\left| {\overrightarrow {AM} } \right|.\cos \left( {\overrightarrow {AI} ,\overrightarrow {AM} } \right)\\ = AI.AM.\cos 0^\circ  = AI.AM\end{array}\) (*)

Mặt khác \(AM = AB.\cos \widehat {MAB}\), thay vào (*) ta có:

\(\begin{array}{l}\overrightarrow {AI} .\overrightarrow {AM}  = AI.AM = AI.AB.\cos \widehat {MAB}\\ = \left| {\overrightarrow {AI} } \right|.\left| {\overrightarrow {AB} } \right|.\cos \left( {\overrightarrow {AI} ,\overrightarrow {AB} } \right) = \overrightarrow {AI} .\overrightarrow {AB} \end{array}\) (đpcm)

\(\begin{array}{l}\overrightarrow {BI} .\overrightarrow {BN}  = \left| {\overrightarrow {BI} } \right|.\left| {\overrightarrow {BN} } \right|.\cos \left( {\overrightarrow {BI} ,\overrightarrow {BN} } \right)\\ = BI.BN.\cos 0^\circ  = BI.BN\end{array}\)    (**)

Mặt khác \(BN = BA.\cos \widehat {NBA}\), thay vào (**) ta có:

\(\begin{array}{l}\overrightarrow {BI} .\overrightarrow {BN}  = BI.BN = BI.BA.\cos \widehat {NBA}\\ = \left| {\overrightarrow {BI} } \right|.\left| {\overrightarrow {BA} } \right|.\cos \left( {\overrightarrow {BI} ,\overrightarrow {BA} } \right) = \overrightarrow {BI} .\overrightarrow {BA} \end{array}\) (đpcm)

b) Từ kết quả của câu a) ta có:

\(\begin{array}{l}\overrightarrow {AI} .\overrightarrow {AM}  + \overrightarrow {BI} .\overrightarrow {BN}  = \overrightarrow {AI} .\overrightarrow {AB}  + \overrightarrow {BI} .\overrightarrow {BA}  = \overrightarrow {AI} .\overrightarrow {AB}  + \overrightarrow {BI} .\left( { – \overrightarrow {AB} } \right)\\ = \overrightarrow {AI} .\overrightarrow {AB}  – \overrightarrow {AB} .\overrightarrow {BI}  = \overrightarrow {AB} \left( {\overrightarrow {AI}  – \overrightarrow {BI} } \right) = \overrightarrow {AB} \left( {\overrightarrow {AI}  + \overrightarrow {IB} } \right) = {\overrightarrow {AB} ^2}\\ = A{B^2} = {\left( {2R} \right)^2} = 4{R^2}\end{array}\)

Vậy \(\overrightarrow {AI} .\overrightarrow {AM}  + \overrightarrow {BI} .\overrightarrow {BN}  = 4{R^2}\) 

— *****

Thuộc chủ đề:[Sách chân trời] Giải SGK Toán 10 Tag với:Giải bài tập Toán 10 Chân trời sáng tạo Chương 5 Bài 4

Bài liên quan:

  1. Giải bài 1 trang 100 SBT Toán 10 Chân trời sáng tạo tập 1 – CTST
  2. Giải bài 2 trang 100 SBT Toán 10 Chân trời sáng tạo tập 1 – CTST
  3. Giải bài 4 trang 101 SBT Toán 10 Chân trời sáng tạo tập 1 – CTST
  4. Giải bài 5 trang 101 SBT Toán 10 Chân trời sáng tạo tập 1 – CTST

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

Bài viết mới

  • Đề thi thử tốt nghiệp THPT môn Sinh học năm 2022-2023 Trường THPT Hồng Bàng 26/03/2023
  • Đề thi giữa HK2 môn Địa lí 12 năm 2022-2023 Trường THPT Lê Trung Kiên 21/03/2023
  • Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2022-2023 Trường THPT Hàm Long Lần 1 20/03/2023
  • Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2022-2023 Trường THPT Phan Châu Trinh 19/03/2023
  • Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2022-2023 Trường THPT Bùi Thị Xuân 19/03/2023




Chuyên mục

Copyright © 2023 · Hocz.Net. Giới thiệu - Liên hệ - Bảo mật - Sitemap.
Học Trắc nghiệm - Giao Vien VN - Môn Toán - Sách toán - QAz Do - Hoc tot hon - Lop 12 - Hoc giai