• Skip to main content
  • Bỏ qua primary sidebar
  • Môn Văn
  • Học tiếng Anh
  • CNTT
  • Sách Giáo Khoa
  • Tư liệu học tập Tiểu học
  • Nghe Nhạc

Học hỏi Net

Mạng học hỏi cho học sinh và cuộc sống

Bạn đang ở:Trang chủ / [Sách chân trời] Giải SGK Toán 10 / Giải bài 3 trang 18 SBT Toán 10 Chân trời sáng tạo tập 2 – CTST

Giải bài 3 trang 18 SBT Toán 10 Chân trời sáng tạo tập 2 – CTST

02/03/2023 by Minh Đạo Để lại bình luận

Giải các phương trình sau:

a) \(\sqrt { – {x^2} + 7x + 13}  = 5\)   

b) \(\sqrt { – {x^2} + 3x + 7}  = 3\)

c) \(\sqrt {69{x^2} – 52x + 4}  =  – 6x + 4\)

d) \(\sqrt { – {x^2} – 4x + 22}  =  – 2x + 5\)

e) \(\sqrt {4x + 30}  = 2x + 3\)

g) \(\sqrt { – 57x + 139}  = 3x – 11\)

Hướng dẫn giải chi tiết Bài 3

Phương pháp giải

Bước 1: Bình phương hai vế

Bước 2: Rút gọn và giải phương trình bậc hai đó

Bước 3: Thay nghiệm vừa tìm được vào phương trình ban đầu và kết luận

Lời giải chi tiết

a) Bình phương 2 vế của phương trình đã cho, ta được:

          \(\begin{array}{l} – {x^2} + 7x + 13 = 25\\ \Rightarrow  – {x^2} + 7x – 12 = 0\end{array}\)

         \( \Rightarrow x = 3\) hoặc \(x = 4\)

Thay lần lượt các giá trị vừa tìm được vào phương trình ban đầu ta thấy cả hai giá trị đều thỏa mãn

Vậy nghiệm của phương trình là \(x = 3\) và \(x = 4\)

b) Bình phương 2 vế của phương trình đã cho, ta được:

          \(\begin{array}{l} – {x^2} + 3x + 7 = 9\\ \Rightarrow  – {x^2} + 3x – 2 = 0\end{array}\)

         \( \Rightarrow x = 1\) hoặc \(x = 2\)

Thay lần lượt các giá trị vừa tìm được vào phương trình ban đầu ta thấy cả hai giá trị đều thỏa mãn

Vậy nghiệm của phương trình là \(x = 1\) hoặc \(x = 2\)

c) Bình phương 2 vế của phương trình đã cho, ta được:

          \(\begin{array}{l}69{x^2} – 52x + 4 = 36{x^2} – 48x + 16\\ \Rightarrow 33{x^2} – 4x – 12 = 0\end{array}\)

         \( \Rightarrow x =  – \frac{6}{{11}}\) hoặc \(x = \frac{2}{3}\)

Thay lần lượt các giá trị vừa tìm được vào phương trình ban đầu ta thấy cả hai nghiệm đều thỏa mãn

Vậy nghiệm của phương trình là \(x =  – \frac{6}{{11}}\) hoặc \(x = \frac{2}{3}\)

d) Bình phương 2 vế của phương trình đã cho, ta được:

          \(\begin{array}{l} – {x^2} – 4x + 22 = 4{x^2} – 20x + 25\\ \Rightarrow 5{x^2} – 16x + 3 = 0\end{array}\)

         \( \Rightarrow x = 3\) hoặc \(x = \frac{1}{5}\)

Thay lần lượt các giá trị vừa tìm được vào phương trình ban đầu ta thấy chỉ có \(x = \frac{1}{5}\)  thỏa mãn

Vậy nghiệm của phương trình là \(x = \frac{1}{5}\)

e) Bình phương 2 vế của phương trình đã cho, ta được:

          \(\begin{array}{l}4x + 30 = 4{x^2} + 12x + 9\\ \Rightarrow 4{x^2} + 8x – 21 = 0\end{array}\)

 

         \( \Rightarrow x =  – \frac{7}{2}\) hoặc \(x = \frac{3}{2}\)

Thay lần lượt các giá trị vừa tìm được vào phương trình ban đầu ta thấy chỉ có \(x = \frac{3}{2}\)  thỏa mãn

Vậy nghiệm của phương trình là \(x = \frac{3}{2}\)

g) Bình phương 2 vế của phương trình đã cho, ta được:

          \(\begin{array}{l} – 57x + 139 = 9{x^2} – 66x + 121\\ \Rightarrow 9{x^2} – 9x – 18 = 0\end{array}\)

         \( \Rightarrow x =  – 1\) hoặc \(x = 2\)

Thay lần lượt các giá trị vừa tìm được vào phương trình ban đầu ta thấy không có giá trị nào thỏa mãn

Vậy phương trình đã cho vô nghiệm

— *****

Thuộc chủ đề:[Sách chân trời] Giải SGK Toán 10 Tag với:Giải bài tập Toán 10 Chân trời sáng tạo Chương 7 Bài 3

Bài liên quan:

  1. Giải bài 1 trang 18 SBT Toán 10 Chân trời sáng tạo tập 2 – CTST
  2. Giải bài 2 trang 18 SBT Toán 10 Chân trời sáng tạo tập 2 – CTST
  3. Giải bài 4 trang 18 SBT Toán 10 Chân trời sáng tạo tập 2 – CTST
  4. Giải bài 5 trang 19 SBT Toán 10 Chân trời sáng tạo tập 2 – CTST

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

Bài viết mới

  • Đề thi thử tốt nghiệp THPT môn Sinh học năm 2022-2023 Trường THPT Hồng Bàng 26/03/2023
  • Đề thi giữa HK2 môn Địa lí 12 năm 2022-2023 Trường THPT Lê Trung Kiên 21/03/2023
  • Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2022-2023 Trường THPT Hàm Long Lần 1 20/03/2023
  • Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2022-2023 Trường THPT Phan Châu Trinh 19/03/2023
  • Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2022-2023 Trường THPT Bùi Thị Xuân 19/03/2023




Chuyên mục

Copyright © 2023 · Hocz.Net. Giới thiệu - Liên hệ - Bảo mật - Sitemap.
Học Trắc nghiệm - Giao Vien VN - Môn Toán - Sách toán - QAz Do - Hoc tot hon - Lop 12 - Hoc giai