Gieo ba con xúc xắc cân đối và đồng chất. Tính xác suất của mỗi biến cố sau:
a) “Tổng số chấm xuất hiện nhỏ hơn 5”
b) “Tích số chấm xuất hiện chia hết cho 5”
Phương pháp giải
Bước 1: Xác định không gian mẫu
Bước 2: Xác định biến cố đối \(\overline A \)
Bước 3: Tính xác suất bằng công thức \(P(\overline A ) = \frac{{n(\overline A )}}{{n(\Omega )}} \Rightarrow P\left( A \right) = 1 – P\left( {\overline A } \right)\)
Lời giải chi tiết
Tổng số khả năng có thể xảy ra của phép thử là \(n\left( \Omega \right) = {6^3}\)
a) Gọi A là biến cố “Tổng số chấm xuất hiện nhỏ hơn 5”, ta có biến cố đối của A là \(\overline A \): “Tổng số chấm xuất hiện lớn hơn hoặc bằng 5”
Số kết quả thuận lợi cho \(\overline A \) là \(n\left( {\overline A } \right) = 1 + C_3^1 = 4\)
Xác suất của biến cố \(\overline A \) là \(P\left( {\overline A } \right) = \frac{4}{{{6^3}}} = \frac{1}{{54}}\)
Vậy xác suất của biến cố A là \(P\left( A \right) = 1 – P\left( {\overline A } \right) = 1 – \frac{1}{{54}} = \frac{{53}}{{54}}\)
b) Gọi A là biến cố “Tích số chấm xuất hiện chia hết cho 5”, ta có biến cố đối của A là \(\overline A \): “Tích số chấm xuất hiện không chia hết cho 5”
\(\overline A \) xảy ra khi không có mặt của xúc xắc nào xuất hiện 5 chấm
Số kết quả thuận lợi cho \(\overline A \) là \(n\left( {\overline A } \right) = {5^3}\)
Xác suất của biến cố \(\overline A \) là \(P\left( {\overline A } \right) = \frac{{{5^3}}}{{{6^3}}} = \frac{{125}}{{216}}\)
Vậy xác suất của biến cố A là \(P\left( A \right) = 1 – P\left( {\overline A } \right) = 1 – \frac{{125}}{{216}} = \frac{{91}}{{216}}\)
Để lại một bình luận