• Skip to main content
  • Bỏ qua primary sidebar
  • Môn Văn
  • Học tiếng Anh
  • CNTT
  • Sách Giáo Khoa
  • Tư liệu học tập Tiểu học
  • Nghe Nhạc

Học hỏi Net

Mạng học hỏi cho học sinh và cuộc sống

Bạn đang ở:Trang chủ / [Sách chân trời] Giải SGK Toán 10 / Giải bài 5 trang 97 SBT Toán 10 Chân trời sáng tạo tập 1 – CTST

Giải bài 5 trang 97 SBT Toán 10 Chân trời sáng tạo tập 1 – CTST

01/03/2023 by Minh Đạo Để lại bình luận

Cho lục giác ABCDEF. Gọi M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, BC, CD, DE, EF, FA. Chứng minh rằng hai tam giác MPR và NQS có cùng trọng tâm.

Hướng dẫn giải chi tiết Bài 5

Phương pháp giải

Sử dụng quy tắc 3 điểm \(\overrightarrow {MA}  = \overrightarrow {MG}  + \overrightarrow {GA}\)

Lời giải chi tiết

Gọi O là trọng tâm của tam giác MPR

Ta có MN là đường trung bình của tam giác ABC nên \(\overrightarrow {MN}  = \frac{1}{2}\overrightarrow {AC} \)

Tương tự PQ và RS cũng là đường trung bình của tam giác CDE và EFA nên

\(\overrightarrow {PQ}  = \frac{1}{2}\overrightarrow {CE} ;\overrightarrow {RS}  = \frac{1}{2}\overrightarrow {EA} \)

Từ đó suy ra \(\overrightarrow {MN}  + \overrightarrow {PQ}  + \overrightarrow {RS}  = \frac{1}{2}\overrightarrow {AC}  + \frac{1}{2}\overrightarrow {CE}  + \frac{1}{2}\overrightarrow {EA}  = \frac{1}{2}\left( {\overrightarrow {AC}  + \overrightarrow {CE}  + \overrightarrow {EA} } \right) = \overrightarrow 0 \)

\( \Rightarrow \overrightarrow {MN}  + \overrightarrow {PQ}  + \overrightarrow {RS}  = \overrightarrow 0 \)

\( \Leftrightarrow \left( {\overrightarrow {MO}  + \overrightarrow {ON} } \right) + \left( {\overrightarrow {PO}  + \overrightarrow {OQ} } \right) + \left( {\overrightarrow {RO}  + \overrightarrow {OS} } \right) = \overrightarrow 0 \)

\( \Leftrightarrow \overrightarrow {ON}  + \overrightarrow {OQ}  + \overrightarrow {OS}  = \overrightarrow {OM}  + \overrightarrow {OP}  + \overrightarrow {OR} \)

Mà ta có O là trọng tâm của tam giác MPR nên \(\overrightarrow {OM}  + \overrightarrow {OP}  + \overrightarrow {OR}  = \overrightarrow 0 \)

Suy ra \(\overrightarrow {ON}  + \overrightarrow {OQ}  + \overrightarrow {OS}  = \overrightarrow {OM}  + \overrightarrow {OP}  + \overrightarrow {OR}  = \overrightarrow 0 \)

Vậy O vừa trọng tâm của tam giác MPR vừa là trọng tâm của tam giác NQS

— *****

Thuộc chủ đề:[Sách chân trời] Giải SGK Toán 10 Tag với:Giải bài tập Toán 10 Chân trời sáng tạo Chương 5 Bài 3

Bài liên quan:

  1. Giải bài 1 trang 96 SBT Toán 10 Chân trời sáng tạo tập 1 – CTST
  2. Giải bài 2 trang 97 SBT Toán 10 Chân trời sáng tạo tập 1 – CTST
  3. Giải bài 3 trang 97 SBT Toán 10 Chân trời sáng tạo tập 1 – CTST
  4. Giải bài 4 trang 97 SBT Toán 10 Chân trời sáng tạo tập 1 – CTST
  5. Giải bài 6 trang 97 SBT Toán 10 Chân trời sáng tạo tập 1 – CTST

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

Bài viết mới

  • Đề thi thử tốt nghiệp THPT môn Sinh học năm 2022-2023 Trường THPT Hồng Bàng 26/03/2023
  • Đề thi giữa HK2 môn Địa lí 12 năm 2022-2023 Trường THPT Lê Trung Kiên 21/03/2023
  • Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2022-2023 Trường THPT Hàm Long Lần 1 20/03/2023
  • Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2022-2023 Trường THPT Phan Châu Trinh 19/03/2023
  • Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2022-2023 Trường THPT Bùi Thị Xuân 19/03/2023




Chuyên mục

Copyright © 2023 · Hocz.Net. Giới thiệu - Liên hệ - Bảo mật - Sitemap.
Học Trắc nghiệm - Giao Vien VN - Môn Toán - Sách toán - QAz Do - Hoc tot hon - Lop 12 - Hoc giai