• Skip to main content
  • Bỏ qua primary sidebar
  • Môn Văn
  • Học tiếng Anh
  • CNTT
  • Sách Giáo Khoa
  • Tư liệu học tập Tiểu học
  • Nghe Nhạc

Học hỏi Net

Mạng học hỏi cho học sinh và cuộc sống

Bạn đang ở:Trang chủ / [Sách chân trời] Giải SGK Toán 10 / Giải bài 7 trang 14 SBT Toán 10 Chân trời sáng tạo tập 2 – CTST

Giải bài 7 trang 14 SBT Toán 10 Chân trời sáng tạo tập 2 – CTST

02/03/2023 by Minh Đạo Để lại bình luận

Với giá trị nào của tham số m thì:

a) Phương trình \(4{x^2} + 2\left( {m – 2} \right)x + {m^2} = 0\) có nghiệm

b) Phương trình \(\left( {m + 1} \right){x^2} + 2mx – 4 = 0\) có hai nghiệm phân biệt

c) Phương trình \(m{x^2} + \left( {m + 1} \right)x + 3m + 10 = 0\) vô nghiệm

d) Bất phương trình \(2{x^2} + \left( {m + 2} \right)x + \left( {2m – 4} \right) \ge 0\) có tập nghiệm là \(\mathbb{R}\)

e) Bất phương trình \( – 3{x^2} + 2mx + {m^2} \ge 0\) có tập nghiệm là \(\mathbb{R}\)

Hướng dẫn giải chi tiết Bài 7

Phương pháp giải

a, b, c)

Bước 1: Tính \(\Delta  = {b^2} – 4ac\) hoặc \(\Delta ‘ = b{‘^2} – ac\) với \(b = 2b’\)

Bước 2:

+) phương trình có hai nghiệm phân biệt \( \Leftrightarrow \Delta  > 0\)

+) phương trình có 1 nghiệm duy nhất \( \Leftrightarrow \Delta  = 0\)

+) phương tình vô nghiệm \( \Leftrightarrow \Delta  < 0\)

Bước 3: Xét dấu tam thức bậc hai và kết luận.

d, e) \(f(x) \ge 0\;\forall x \in \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}a > 0\\\Delta  \le 0\end{array} \right.\)

Lời giải chi tiết

a) Phương trình \(4{x^2} + 2\left( {m – 2} \right)x + {m^2} = 0\) có nghiệm khi và chỉ khi \(\Delta ‘ \ge 0\)

hay \({\left( {m – 2} \right)^2} – 4{m^2} \ge 0 \Leftrightarrow  – 3{m^2} – 4m + 4 \ge 0 \Leftrightarrow  – 2 \le m \le \frac{2}{3}\)

Vậy \(m \in \left[ { – 2;\frac{2}{3}} \right]\)

b) Phương trình \(\left( {m + 1} \right){x^2} + 2mx – 4 = 0\) có hai nghiệm phân biệt khi và chỉ khi \(\left\{ \begin{array}{l}\Delta ‘ > 0\\m + 1 \ne 0\end{array} \right.\), hay \({m^2} – \left( {m + 1} \right).\left( { – 4} \right) > 0 \Leftrightarrow {m^2} + 4m + 4 > 0\) và \(m \ne  – 1\)

mà \({m^2} + 4m + 4 > 0\forall m \ne  – 2\)

Vậy với \(m \in \mathbb{R}\backslash \left\{ { – 2; – 1} \right\}\)thì phương trình \(\left( {m + 1} \right){x^2} + 2mx – 4 = 0\) có hai nghiệm phân biệt

c) Phương trình \(m{x^2} + \left( {m + 1} \right)x + 3m + 10 = 0\) vô nghiệm khi và chỉ khi \(\Delta  < 0\)

hay \({\left( {m + 1} \right)^2} – 4m\left( {3m + 10} \right) < 0 \Leftrightarrow  – 11{m^2} – 38m + 1 < 0 \Leftrightarrow \left[ \begin{array}{l}x < \frac{{ – 19 – 2\sqrt {93} }}{{11}}\\x > \frac{{ – 19 + 2\sqrt {93} }}{{11}}\end{array} \right.\)

Vậy khi \(m \in \left( { – \infty ;\frac{{ – 19 – 2\sqrt {93} }}{{11}}} \right) \cup \left( {\frac{{ – 19 + 2\sqrt {93} }}{{11}}; + \infty } \right)\) thì phương trình \(m{x^2} + \left( {m + 1} \right)x + 3m + 10 = 0\) vô nghiệm

d) Bất phương trình \(2{x^2} + \left( {m + 2} \right)x + \left( {2m – 4} \right) \ge 0\) có tập nghiệm là R

\( \Leftrightarrow 2{x^2} + \left( {m + 2} \right)x + \left( {2m – 4} \right) \ge 0\;\forall x \in \mathbb{R}\)

Vì \(a = 2 > 0\) nên để bất phương trình có tập nghiệm trên \(\mathbb{R}\) khi và chỉ khi \(\Delta  \le 0\) 

hay \({\left( {m + 2} \right)^2} – 4.2\left( {2m – 4} \right) < 0 \Leftrightarrow {m^2} – 12m + 36 \le 0 \Leftrightarrow m = 6\)

Vậy \(m = 6\)

e) Bất phương trình \( – 3{x^2} + 2mx + {m^2} \ge 0\) có tập nghiệm là R

\( \Leftrightarrow  – 3{x^2} + 2mx + {m^2} \ge 0\;\forall x \in \mathbb{R}\)

\( \Leftrightarrow \left\{ \begin{array}{l}a =  – 3 > 0\\\Delta  \le 0\end{array} \right.\) (Vô lí)

Do đó bất phương trình không thể có tập nghiệm là \(\mathbb{R}\)

Vậy không có giá trị m thỏa mãn yêu cầu

— *****

Thuộc chủ đề:[Sách chân trời] Giải SGK Toán 10 Tag với:Giải bài tập Toán 10 Chân trời sáng tạo Chương 7 Bài 2

Bài liên quan:

  1. Giải bài 1 trang 13 SBT Toán 10 Chân trời sáng tạo tập 2 – CTST
  2. Giải bài 2 trang 13 SBT Toán 10 Chân trời sáng tạo tập 2 – CTST
  3. Giải bài 3 trang 14 SBT Toán 10 Chân trời sáng tạo tập 2 – CTST
  4. Giải bài 4 trang 14 SBT Toán 10 Chân trời sáng tạo tập 2 – CTST
  5. Giải bài 5 trang 14 SBT Toán 10 Chân trời sáng tạo tập 2 – CTST
  6. Giải bài 6 trang 14 SBT Toán 10 Chân trời sáng tạo tập 2 – CTST
  7. Giải bài 8 trang 14 SBT Toán 10 Chân trời sáng tạo tập 2 – CTST
  8. Giải bài 9 trang 15 SBT Toán 10 Chân trời sáng tạo tập 2 – CTST
  9. Giải bài 10 trang 15 SBT Toán 10 Chân trời sáng tạo tập 2 – CTST
  10. Giải bài 11 trang 15 SBT Toán 10 Chân trời sáng tạo tập 2 – CTST
  11. Giải bài 12 trang 15 SBT Toán 10 Chân trời sáng tạo tập 2 – CTST

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

Bài viết mới

  • Đề thi giữa HK2 môn Địa lí 12 năm 2022-2023 Trường THPT Lê Trung Kiên 21/03/2023
  • Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2022-2023 Trường THPT Hàm Long Lần 1 20/03/2023
  • Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2022-2023 Trường THPT Phan Châu Trinh 19/03/2023
  • Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2022-2023 Trường THPT Bùi Thị Xuân 19/03/2023
  • Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2022-2023 Trường THPT Trần Hữu Trang 19/03/2023




Chuyên mục

Copyright © 2023 · Hocz.Net. Giới thiệu - Liên hệ - Bảo mật - Sitemap.
Học Trắc nghiệm - Giao Vien VN - Môn Toán - Sách toán - QAz Do - Hoc tot hon - Lop 12 - Hoc giai