• Skip to main content
  • Bỏ qua primary sidebar
  • Môn Văn
  • Học tiếng Anh
  • CNTT
  • Sách Giáo Khoa
  • Tư liệu học tập Tiểu học
  • Nghe Nhạc

Học hỏi Net

Mạng học hỏi cho học sinh và cuộc sống

Bạn đang ở:Trang chủ / [Sách chân trời] Giải SGK Toán 10 / Giải bài 8 trang 10 SBT Toán 10 Chân trời sáng tạo tập 2 – CTST

Giải bài 8 trang 10 SBT Toán 10 Chân trời sáng tạo tập 2 – CTST

02/03/2023 by Minh Đạo Để lại bình luận

Xác định giá trị của các hệ số a, b, c và xét dấu của tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\) trong mỗi trường hợp sau:

a) Đồ thị của hàm số \(y = f\left( x \right)\) đi qua ba điểm có tọa độ là \(\left( { – 1; – 4} \right),\left( {0;3} \right)\) và \(\left( {1; – 14} \right)\)

b) Đồ thị của hàm số \(y = f\left( x \right)\) đi qua ba điểm có tọa độ là \(\left( {0; – 2} \right),\left( {2;6} \right)\) và \(\left( {3;13} \right)\)

c) \(f\left( { – 5} \right) = 33,f\left( 0 \right) = 3\) và \(f\left( 2 \right) = 19\)

Hướng dẫn giải chi tiết Bài 8

Phương pháp giải

Giả sử tam thức bậc hai có công thức tổng quát là \(f\left( x \right) = a{x^2} + bx + c\)

a) Vì đồ thị của hàm số \(y = f\left( x \right)\) đi qua ba điểm có tọa độ là \(\left( { – 1; – 4} \right),\left( {0;3} \right)\) và \(\left( {1; – 14} \right)\) nên thay tọa độ của ba điểm vào phương trình tổng quát

b) Vì đồ thị của hàm số \(y = f\left( x \right)\) đi qua ba điểm có tọa độ là \(\left( {0; – 2} \right),\left( {2;6} \right)\) và \(\left( {3;13} \right)\) nên thay tọa độ của ba điểm vào phương trình tổng quát 

Lời giải chi tiết

a) Vì đồ thị của hàm số \(y = f\left( x \right)\) đi qua ba điểm có tọa độ là \(\left( { – 1; – 4} \right),\left( {0;3} \right)\) và \(\left( {1; – 14} \right)\) nên thay tọa độ của ba điểm vào phương trình tổng quát ta có:

\(\left\{ \begin{array}{l} – 4 = a{\left( { – 1} \right)^2} + b\left( { – 1} \right) + c\\3 = a{.0^2} + b.0 + c\\ – 14 = a{\left( 1 \right)^2} + b\left( 1 \right) + c\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a – b + c =  – 4\\c = 3\\a + b + c =  – 14\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  – 12\\b =  – 5\\c = 3\end{array} \right.\)

Từ a, b, c đã xác định được ta có \(\Delta  = 169 > 0\), tam thức có hai nghiệm phân biệt \(x =  – \frac{3}{4}\) và \(x = \frac{1}{3}\), trong đó \(a =  – 12 < 0\)

Ta có bảng biến thiên sau đây

 

Vậy tam thức đã cho có dạng là \(f\left( x \right) =  – 12{x^2} – 5x + 3\) dương trên khoảng \(\left( { – \frac{3}{4};\frac{1}{3}} \right)\), âm trên khoảng \(\left( { – \infty ; – \frac{3}{4}} \right)\) và \(\left( {\frac{1}{3}; + \infty } \right)\)

b) Giả sử tam thức bậc hai có công thức tổng quát là \(f\left( x \right) = a{x^2} + bx + c\)

Vì đồ thị của hàm số \(y = f\left( x \right)\) đi qua ba điểm có tọa độ là \(\left( {0; – 2} \right),\left( {2;6} \right)\) và \(\left( {3;13} \right)\)

 nên thay tọa độ của ba điểm vào phương trình tổng quát ta có:

\(\left\{ \begin{array}{l} – 2 = a{.0^2} + b.0 + c\\6 = a{.2^2} + b.2 + c\\13 = a{.3^2} + b.3 + c\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}c =  – 2\\4a + 2b + c = 6\\9a + 3b + c = 13\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 2\\c =  – 2\end{array} \right.\)

 

Từ a, b, c đã xác định được ta có \(\Delta  = 12 > 0\), tam thức có hai nghiệm phân biệt \(x =  – 1 – \sqrt 3 \) và \(x =  – 1 + \sqrt 3 \), trong đó \(a = 1 > 0\)

Ta có bảng biến thiên sau đây

 

Vậy tam thức đã cho có dạng là \(f\left( x \right) = {x^2} + 2x – 2\) âm  trên khoảng \(\left( { – 1 – \sqrt 3 ; – 1 + \sqrt 3 } \right)\), dương trên khoảng \(\left( { – \infty ; – 1 – \sqrt 3 } \right)\) và \(\left( { – 1 + \sqrt 3 ; + \infty } \right)\)

c) Giả sử tam thức bậc hai có công thức tổng quát là \(f\left( x \right) = a{x^2} + bx + c\)

Vì \(f\left( { – 5} \right) = 33\) nên \(a.{( – 5)^2} + b.( – 5) + c = 33\)

Vì \(f\left( 0 \right) = 3\) nên \(a{.0^2} + b.0 + c = 3\)

Vì \(f\left( 2 \right) = 19\) nên \(a{.2^2} + b.2 + c = 19\)

Từ đó ta có hệ

\(\left\{ \begin{array}{l}a.{( – 5)^2} + b.( – 5) + c = 33\\a{.0^2} + b.0 + c = 3\\a{.2^2} + b.2 + c = 19\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}25a – 5b + c = 33\\c = 3\\4a + 2b + c = 19\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}25a – 5b = 30\\4a + 2b = 16\\c = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 4\\c = 3\end{array} \right.\)

Vậy \(f(x) = 2{x^2} + 4x + 3\), có \(\Delta ‘ = {2^2} – 2.3 =  – 2 < 0\) và \(a = 2 > 0\)nên \(f(x) > 0\) với mọi \(x \in \mathbb{R}\).

— *****

Thuộc chủ đề:[Sách chân trời] Giải SGK Toán 10 Tag với:Giải bài tập Toán 10 Chân trời sáng tạo Chương 7 Bài 1

Bài liên quan:

  1. Giải bài 1 trang 8 SBT Toán 10 Chân trời sáng tạo tập 2 – CTST
  2. Giải bài 2 trang 9 SBT Toán 10 Chân trời sáng tạo tập 2 – CTST
  3. Giải bài 3 trang 9 SBT Toán 10 Chân trời sáng tạo tập 2 – CTST
  4. Giải bài 4 trang 9 SBT Toán 10 Chân trời sáng tạo tập 2 – CTST
  5. Giải bài 5 trang 9 SBT Toán 10 Chân trời sáng tạo tập 2 – CTST
  6. Giải bài 6 trang 9 SBT Toán 10 Chân trời sáng tạo tập 2 – CTST
  7. Giải bài 7 trang 10 SBT Toán 10 Chân trời sáng tạo tập 2 – CTST

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

Bài viết mới

  • Đề thi thử tốt nghiệp THPT môn Sinh học năm 2022-2023 Trường THPT Hồng Bàng 26/03/2023
  • Đề thi giữa HK2 môn Địa lí 12 năm 2022-2023 Trường THPT Lê Trung Kiên 21/03/2023
  • Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2022-2023 Trường THPT Hàm Long Lần 1 20/03/2023
  • Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2022-2023 Trường THPT Phan Châu Trinh 19/03/2023
  • Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2022-2023 Trường THPT Bùi Thị Xuân 19/03/2023




Chuyên mục

Copyright © 2023 · Hocz.Net. Giới thiệu - Liên hệ - Bảo mật - Sitemap.
Học Trắc nghiệm - Giao Vien VN - Môn Toán - Sách toán - QAz Do - Hoc tot hon - Lop 12 - Hoc giai