• Skip to main content
  • Bỏ qua primary sidebar
  • Môn Văn
  • Học tiếng Anh
  • CNTT
  • Sách Giáo Khoa
  • Tư liệu học tập Tiểu học
  • Nghe Nhạc

Học hỏi Net

Mạng học hỏi cho học sinh và cuộc sống

Bạn đang ở:Trang chủ / [Sách kết nối] Giải SGK Toán 10 / Giải bài 4.10 trang 51 SBT Toán 10 Kết nối tri thức tập 1 – KNTT

Giải bài 4.10 trang 51 SBT Toán 10 Kết nối tri thức tập 1 – KNTT

28/02/2023 by Minh Đạo Để lại bình luận

Cho tam giác \(ABC.\) Gọi \(D,\,\,E,\,\,F\) theo thứ tự là trung điểm của các cạnh \(BC,\,\,CA,\,\,AB.\)

a) Xác định vectơ \(\overrightarrow {AF}  – \overrightarrow {BD}  + \overrightarrow {CE} \)

b) Xác định điểm \(M\) thỏa mãn \(\overrightarrow {AF}  – \overrightarrow {BD}  + \overrightarrow {CE}  = \overrightarrow {MA} .\)

c) Chứng minh rằng \(\overrightarrow {MC}  = \overrightarrow {AB} .\)

Hướng dẫn giải chi tiết Bài 4.10

Phương pháp giải

– Chứng minh \(\overrightarrow {AF}  = \overrightarrow {FB} ,\) \(\overrightarrow {BD}  = \overrightarrow {DC} \)

– Áp dụng quy tắc hình bình hành với hai vectơ \(\overrightarrow {CE} \) và \(\overrightarrow {CD} \)

– Chứng minh tứ giác \(ABCM\) là hình bình hành

Lời giải chi tiết

a) Ta có: \(DF\) là đường trung bình của \(\Delta ABC\)

\( \Rightarrow \) \(\overrightarrow {CE}  = \overrightarrow {DF} \)

\( \Rightarrow \) tứ giác \(CDFE\) là hình bình hành.

Ta có: \(D\) và \(F\) lần lượt là trung điểm của \(BC\) và \(AB\)

\( \Rightarrow \) \(\overrightarrow {AF}  = \overrightarrow {FB} ,\) \(\overrightarrow {BD}  = \overrightarrow {DC} \) 

Ta có: \(\overrightarrow {AF}  – \overrightarrow {BD}  + \overrightarrow {CE}  = \overrightarrow {AF}  + \overrightarrow {CD}  + \overrightarrow {CE}  = \overrightarrow {AF}  + \overrightarrow {CF}  = \overrightarrow {CF}  + \overrightarrow {FB}  = \overrightarrow {CB} \)

b) Theo câu a, ta có: \(\overrightarrow {AF}  – \overrightarrow {BD}  + \overrightarrow {CE}  = \overrightarrow {CB} \)

mặt khác \(\overrightarrow {AF}  – \overrightarrow {BD}  + \overrightarrow {CE}  = \overrightarrow {MA} .\)

nên \(\overrightarrow {CB}  = \overrightarrow {MA} \)

\( \Rightarrow \) tứ giác \(ABCM\) là hình bình hành

\( \Rightarrow \) \(M\) là điểm đối xứng với \(B\) qua \(E\)

c) Theo câu b, ta có: tứ giác \(ABCM\) là hình bình hành

\( \Rightarrow \) \(\overrightarrow {MC}  = \overrightarrow {AB} .\)

— *****

Thuộc chủ đề:[Sách kết nối] Giải SGK Toán 10 Tag với:Giải bài tập Toán 10 Kết nối tri thức Chương 4 Bài 8

Bài liên quan:

  1. Giải bài 4.7 trang 50 SBT Toán 10 Kết nối tri thức tập 1 – KNTT
  2. Giải bài 4.8 trang 50 SBT Toán 10 Kết nối tri thức tập 1 – KNTT
  3. Giải bài 4.9 trang 50 SBT Toán 10 Kết nối tri thức tập 1 – KNTT
  4. Giải bài 4.11 trang 51 SBT Toán 10 Kết nối tri thức tập 1 – KNTT
  5. Giải bài 4.12 trang 51 SBT Toán 10 Kết nối tri thức tập 1 – KNTT

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

Bài viết mới

  • Đề thi thử tốt nghiệp THPT môn Sinh học năm 2022-2023 Trường THPT Hồng Bàng 26/03/2023
  • Đề thi giữa HK2 môn Địa lí 12 năm 2022-2023 Trường THPT Lê Trung Kiên 21/03/2023
  • Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2022-2023 Trường THPT Hàm Long Lần 1 20/03/2023
  • Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2022-2023 Trường THPT Phan Châu Trinh 19/03/2023
  • Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2022-2023 Trường THPT Bùi Thị Xuân 19/03/2023




Chuyên mục

Copyright © 2023 · Hocz.Net. Giới thiệu - Liên hệ - Bảo mật - Sitemap.
Học Trắc nghiệm - Giao Vien VN - Môn Toán - Sách toán - QAz Do - Hoc tot hon - Lop 12 - Hoc giai