• Skip to main content
  • Bỏ qua primary sidebar
  • Môn Văn
  • Học tiếng Anh
  • CNTT
  • Sách Giáo Khoa
  • Tư liệu học tập Tiểu học
  • Nghe Nhạc

Học hỏi Net

Mạng học hỏi cho học sinh và cuộc sống

Bạn đang ở:Trang chủ / [Sách kết nối] Giải SGK Toán 10 / Giải bài 4.24 trang 58 SBT Toán 10 Kết nối tri thức tập 1 – KNTT

Giải bài 4.24 trang 58 SBT Toán 10 Kết nối tri thức tập 1 – KNTT

28/02/2023 by Minh Đạo Để lại bình luận

Trong mặt phẳng tọa độ \(Oxy\) cho hai điểm \(M( – 2;1)\) và \(N(4;5).\)

a) Tìm tọa độ của điểm \(P\) thuộc \(Ox\) sao cho \(PM = PN.\)

b) Tìm tọa độ của điểm \(Q\) sao cho \(\overrightarrow {MQ}  = 2\overrightarrow {PN} .\)

c) Tìm tọa độ của điểm \(R\) thỏa mãn \(\overrightarrow {RM}  + 2\overrightarrow {RN}  = \overrightarrow 0 .\) Từ đó suy ra \(P,\,\,Q,\,\,R\) thẳng hàng.

Hướng dẫn giải chi tiết Bài 4.24

Phương pháp giải

– Nếu điểm M có toạ độ (x; y) thì vecto \(\overrightarrow {OM} \) có toạ độ (x; y) và độ dài \(\left| {\overrightarrow {OM} } \right| = \sqrt {{x^2} + {y^2}} \)

– Với hai điểm M(x; y) và N(x’; y’) thì \(\overrightarrow {MN}  = \left( {x’ – x;y’ – y} \right)\) và khoảng cách giữa hai điểm M, N là \(\left| {\overrightarrow {MN} } \right| = \sqrt {{{\left( {x’ – x} \right)}^2} + {{\left( {y’ – y} \right)}^2}} \)  

Lời giải chi tiết

a)  Vì điểm \(P\) thuộc \(Ox\) nên tọa độ điểm \(P\) là: \(P(x;0)\)

Ta có: \(PM = PN\,\, \Leftrightarrow \,\,\left| {\overrightarrow {PM} } \right| = \left| {\overrightarrow {PN} } \right|\)

        \(\begin{array}{l} \Leftrightarrow \,\,\sqrt {{{\left( {x + 2} \right)}^2} + {{\left( {0 – 1} \right)}^2}}  = \sqrt {{{\left( {x – 4} \right)}^2} + {{\left( {0 – 5} \right)}^2}} \\ \Leftrightarrow \,\,\sqrt {{x^2} + 4x + 4 + 1}  = \sqrt {{x^2} – 8x + 16 + 25} \\ \Leftrightarrow \,\,{x^2} + 4x + 5 = {x^2} – 8x + 41\\ \Leftrightarrow \,\,12x = 36\,\, \Leftrightarrow \,\,x = 3\end{array}\)

Vậy \(P(3;0)\)

b) Gọi tọa độ điểm \(Q\) là: \(Q(x;y)\)

Ta có: \(\overrightarrow {MQ}  = 2\overrightarrow {PN} \,\, \Leftrightarrow \,\,(x + 2;y – 1) = 2(4 – 3;5 – 0)\)

 \(\begin{array}{l} \Leftrightarrow \,\,\left( {x + 2;y – 1} \right) = (2;10)\\ \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x + 2 = 2}\\{y – 1 = 10}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x = 0}\\{y = 11}\end{array}} \right.} \right.\end{array}\)

Vậy \(Q(0;11)\)

c) Gọi tọa độ điểm \(R\) là: \(R(x;y)\)

Ta có: \(\overrightarrow {RM}  + 2\overrightarrow {RN}  = \overrightarrow 0 \,\, \Leftrightarrow \,\,\left( { – 2 – x;1 – y} \right) + 2\left( {4 – x;5 – y} \right) = \left( {0;0} \right)\)

 \(\begin{array}{l} \Leftrightarrow \,\,\left( { – 2 – x;1 – y} \right) + \left( {8 – 2x;10 – 2y} \right) = \left( {0;0} \right)\\ \Leftrightarrow \,\,\left( {6 – 3x;11 – 3y} \right) = \left( {0;0} \right)\\ \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{6 – 3x = 0}\\{11 – 3y = 0}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x = 2}\\{y = \frac{{11}}{3}}\end{array}} \right.} \right.\end{array}\) 

Vậy \(R\left( {2;\frac{{11}}{3}} \right)\)

Ta có: \(\overrightarrow {PQ}  = \left( { – 3;11} \right),\,\,\overrightarrow {PR}  = \left( { – 1;\frac{{11}}{3}} \right)\) \( \Rightarrow \) \(\overrightarrow {PQ} \) và \(\overrightarrow {PR} \) cùng phương

\( \Rightarrow \) \(P,\,\,Q,\,\,R\) thẳng hàng

— *****

Thuộc chủ đề:[Sách kết nối] Giải SGK Toán 10 Tag với:Giải bài tập Toán 10 Kết nối tri thức Chương 4 Bài 10

Bài liên quan:

  1. Giải bài 4.22 trang 58 SBT Toán 10 Kết nối tri thức tập 1 – KNTT
  2. Giải bài 4.23 trang 58 SBT Toán 10 Kết nối tri thức tập 1 – KNTT
  3. Giải bài 4.25 trang 59 SBT Toán 10 Kết nối tri thức tập 1 – KNTT
  4. Giải bài 4.26 trang 59 SBT Toán 10 Kết nối tri thức tập 1 – KNTT
  5. Giải bài 4.27 trang 59 SBT Toán 10 Kết nối tri thức tập 1 – KNTT
  6. Giải bài 4.28 trang 59 SBT Toán 10 Kết nối tri thức tập 1 – KNTT

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

Bài viết mới

  • Đề thi giữa HK2 môn Địa lí 12 năm 2022-2023 Trường THPT Lê Trung Kiên 21/03/2023
  • Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2022-2023 Trường THPT Hàm Long Lần 1 20/03/2023
  • Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2022-2023 Trường THPT Phan Châu Trinh 19/03/2023
  • Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2022-2023 Trường THPT Bùi Thị Xuân 19/03/2023
  • Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2022-2023 Trường THPT Trần Hữu Trang 19/03/2023




Chuyên mục

Copyright © 2023 · Hocz.Net. Giới thiệu - Liên hệ - Bảo mật - Sitemap.
Học Trắc nghiệm - Giao Vien VN - Môn Toán - Sách toán - QAz Do - Hoc tot hon - Lop 12 - Hoc giai