Trong mặt phẳng \(Oxy\), cho đường thẳng \(\Delta :2x + y – 5 = 0\)
a) Viết phương trình đường thẳng d đi qua điểm \(A\left( {3;1} \right)\) và song song với đường thẳng \(\Delta \)
b) Viết phương trình đường thẳng k đ qua điểm \(B\left( { – 1;0} \right)\) và vuông góc với đường thẳng \(\Delta \)
c) Lập phương trình đường thẳng a song song với đường thẳng \(\Delta \) và cách điểm O một khoảng bằng \(\sqrt 5 \)
Hướng dẫn giải chi tiết Bài 7.14
Phương pháp giải
Cho đường thẳng \(\Delta \) đi qua điểm \(A\left( {{x_0};{y_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u \left( {a;b} \right)\). Khi đó điểm M(x: y) thuộc đường thẳng \(\Delta \) khi và chỉ khi tổn tại số thực t sao cho \(\overrightarrow {AM} = t\overrightarrow u \), hay
\(\left\{ \begin{array}{l}
x = {x_0} + at\\
y = {y_0} + bt
\end{array} \right.\;\;\;\;\;\;\;\;(2)\)
Hệ (2) được gọi là phương trình tham số của đường thẳng \(\Delta \) (t là tham số).
Lời giải chi tiết
a) d song song với đường thẳng \(\Delta \)\( \Rightarrow \overrightarrow {{n_d}} = \overrightarrow {{n_\Delta }} = \left( {2;1} \right)\)
d đi qua điểm \(A\left( {3;1} \right)\) có \(\overrightarrow {{n_d}} = \left( {2;1} \right) \Rightarrow d:2\left( {x – 3} \right) + 1\left( {y – 1} \right) = 0 \Rightarrow d:2x + y – 7 = 0\)
b) d vuông với đường thẳng \(\Delta \)\( \Rightarrow \overrightarrow {{v_d}} = \overrightarrow {{n_\Delta }} = \left( {2;1} \right) \Rightarrow \overrightarrow {{n_d}} = \left( {1; – 2} \right)\)
d đi qua điểm \(B\left( { – 1;0} \right)\) có \(\overrightarrow {{n_d}} = \left( {1; – 2} \right) \Rightarrow d:1\left( {x + 1} \right) – 2\left( {y – 0} \right) = 0 \Rightarrow d:x – 2y + 1 = 0\)
c) Đường thẳng a song song với đường thẳng \(\Delta \) \( \Rightarrow a:2x + y + c = 0\) với \(c \ne – 5\)
O cách a một khoảng là \(\sqrt 5 \Rightarrow \frac{{\left| {2.0 + 0 + c} \right|}}{{\sqrt {{2^2} + {1^2}} }} \Rightarrow \left| c \right| = 5 \Rightarrow c = \pm 5\)
\( \Rightarrow a:2x + y + 5 = 0\)
— *****
Trả lời