Các phương trình dưới đây là phương trình chính tắc của đường nào? Khi đó hãy tìm các tiêu điểm, tiêu cực, đường chuẩn (nếu là đường parabol)
a) \({y^2} = 10x\)
b) \({x^2} – {y^2} = 1\)
c) \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1\)
Hướng dẫn giải chi tiết Bài 7.58
Phương pháp giải
+ Phương trình Elip có dạng \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) với \(a > b > 0\) có hai tiêu điểm \({F_1}\left( { – c;0} \right),{F_2}\left( {c;0} \right)\)và có tiêu cự là \(2c\) với \(c = \sqrt {{a^2} – {b^2}} \) có hai tiêu điểm \({F_1}\left( { – c;0} \right),{F_2}\left( {c;0} \right)\)và có tiêu cự là \(2c\) với \(c = \sqrt {{a^2} + {b^2}} \)
+ Phương trình Hypebol có dạng \(\frac{{{x^2}}}{{{a^2}}} – \frac{{{y^2}}}{{{b^2}}} = 1\) với \(a > b > 0\)
+ Phương trình đường parabol \({y^2} = 2px\)
Lời giải chi tiết
a) \({y^2} = 10x\) \(\Rightarrow \) Đây là đường parabol
Có \(a = 10 > 0\) \(\Rightarrow \) Đồ thị có 1 điểm cực tiểu \(x = 0 \Rightarrow y = 0\)
b) \({x^2} – {y^2} = 1 \Rightarrow \frac{{{x^2}}}{{{1^2}}} – \frac{{{y^2}}}{{{1^2}}} = 1\) \(\Rightarrow \) Đây là đường hypebol với \(c = \sqrt {{a^2} + {b^2}} = \sqrt {{1^2} + {1^2}} = \sqrt 2 \)
\(\Rightarrow \) Hai tiêu điểm là \({F_1}\left( { – \sqrt 2 ;0} \right),{F_2}\left( {\sqrt 2 ;0} \right)\)
c) \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1\) \(\Rightarrow \) Đây là đường elip với \(c = \sqrt {25 – 16} = 3\) \(\Rightarrow \) Hai tiêu điểm là \({F_1}\left( { – 3;0} \right),{F_2}\left( {3;0} \right)\)
— *****
Để lại một bình luận