Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 7

20 Bài tập Tập hợp Q các số hữu tỉ có đáp án – Toán 7

By admin 22/10/2023 0

Bài tập Toán lớp 7 Bài 1: Tập hợp Q các số hữu tỉ

A. Bài tập Tập hợp Q các số hữu tỉ

A.1 Bài tập tự luận

Bài 1. Hãy biểu diễn số hữu tỉ −34 trên trục số.

Hướng dẫn giải

– Chia đoạn thẳng đơn vị (chẳng hạn đoạn từ điểm 0 đến điểm 1) thành bốn phần bằng nhau, lấy một đoạn làm đơn vị mới (đơn vị mới bằng 14 đơn vị cũ).

– Đi theo chiều ngược chiều dương của trục số bắt đầu từ điểm 0, ta lấy 3 đơn vị mới đến điểm A. Điểm A chính là điểm biểu diễn số hữu tỉ −34.

Bài 2. Các số: −1,25;  0;  257; có là số hữu tỉ không? Vì sao?

Hướng dẫn giải

 Các số −1,25;  0;  257; đều là số hữu tỉ, vì vậy chúng viết được dưới dạng phân số: −1,25=−125100;  0=01;   257=197 .

Bài 3. So sánh hai số hữu tỉ 2−7 và −311 .

Hướng dẫn giải

Hai số hữu tỉ trên đã viết dưới dạng phân số vì vậy để so sánh ta đưa phân số về có cùng mẫu dương, sau đó ta chỉ cần so sánh hai tử số.

Ta có 2−7=−27=−2277 và −311=−2177

Vì −22<−21 nên −2277<−2177 . Suy ra 2−7 < −311 .

Bài 4. Tìm số đối của số hữu tỉ 3−5 .

Hướng dẫn giải

Số đối của số hữu tỉ 3−5 là: −3−5=−−35=35.

A.2 Bài tập trắc nghiệm

Câu 1. Chọn câu trả lời đúng?

A. –5 ∈ ℕ;

B. −57∈ℤ;

C. −47∉ℚ;

D. 35∈ℚ.

Hướng dẫn giải

Đáp án đúng là: D

Do ‒5 là số nguyên âm, mà ℕ là tập hợp các số tự nhiên nên –5 ∈ ℕ là cách viết sai.

− 57 là số hữu tỉ, mà ℤ là tập hợp các số nguyên nên − 57 là cách viết sai.

− 47 là số hữu tỉ nên −47∉ℚ là cách viết sai.

35 là số hữu tỉ nên cách viết 35∈ℚ là cách viết đúng.

Câu 2. Hình nào biểu diễn số 13và số đối của 13 ?

A.

B.

C.

D.

Hướng dẫn giải

Đáp án đúng là: D

Trên trục số, hai số hữu tỉ (phân biệt) có điểm biểu diễn nằm về hai phía của điểm gốc 0 và cách đều điểm gốc 0 được gọi là hai số đối nhau;

Để xác định điểm biểu diễn của số 13, ta chia đoạn từ điểm 0 đến điểm 1 thành 3 phần bằng nhau. Đi theo chiều dương của trục, bắt đầu từ điểm 0, ta lấy 1 phần sẽ được điểm biểu diễn 13 ; lấy điểm đối xứng qua điểm 0 ta được điểm biểu diễn − 13.

Vậy đáp án D biểu diễn số 13và số đối của 13 hay số − 13.

Câu 3. Hãy sắp xếp các số hữu tỉ sau đây theo thứ tự tăng dần 15, − 25, 37, − 13, 0.

A. − 25; − 13; 0; 15; 37;   

B. − 25; − 13; 0; 37; 15;

C. − 13; − 25; 0; 15; 37;

D. − 13; − 25; 0; 37; 15.

Hướng dẫn giải

Đáp án đúng là: A

Ta có − 13 = − 515, − 25 = − 615; 

Do 0 >  − 515 > − 615 nên 0 > − 13 > − 25.

Lại có: 37 = 1535, 15 = 735;

Do 1535 > 735 > 0 nên 37 > 15>0.

Suy ra: 37 > 15 > 0 > − 13 > − 25.

Do đó − 25 < − 13 < 0 < 15 < 37.

Vậy sắp xếp các số đã cho theo thứ tự tăng dần là: − 25; − 13; 0; 15; 37 .

B. Lý thuyết Tập hợp ℚ các số hữu tỉ

1. Số hữu tỉ

– Số hữu tỉ là số viết được dưới dạng phân số aba,b∈ℤ,b≠0 .

– Tập hợp các số hữu tỉ kí hiệu là ℚ.

Ví dụ: Các số −7; 0,6; −1,2; 145 là các số hữu tỉ bởi vì chúng đều viết được dưới dạng phân số:  −7=−71;  0,6=610; −1,2=−1210; 145=95.

Chú ý:

– Mỗi số nguyên là một số hữu tỉ.

– Các phân số bằng nhau là cách viết khác nhau của cùng một số hữu tỉ.

Ví dụ: Vì  12=24 nên 12 và 24cùng biểu diễn một số hữu tỉ.

2. Biểu diễn số hữu tỉ trên trục số

– Tương tự số nguyên ta có thể biểu diễn mọi số hữu tỉ trên trục số.

– Điểm biểu diễn số hữu tỉ a được gọi là điểm a.

– Do các phân số bằng nhau cùng biểu diễn một số hữu tỉ nên khi biểu diễn số hữu tỉ trên trục số ta chọn một trong những phân số đó để biểu diễn. Thông thường ta chọn phân số tối giản để biểu diễn số hữu tỉ đó.

– Nếu số hữu tỉ chưa viết dưới dạng phân số thì ta viết lại chúng dưới dạng phân số rồi biểu diễn phân số đó trên trục số.

Ví dụ: a) Biểu diễn số hữu tỉ 1,5 trên trục số.

– Ta viết 1,5 dưới dạng phân số: 1,5=1510=32. Ta sẽ biểu diễn phân số 32 trên trục số.

– Chia đoạn thẳng đơn vị (chẳng hạn đoạn từ điểm 0 đến điểm 1) thành hai phần bằng nhau, lấy một đoạn làm đơn vị mới (đơn vị mới bằng 12 đơn vị cũ).

– Đi theo chiều dương của trục số bắt đầu từ điểm 0, ta lấy 3 đơn vị mới đến điểm M. Điểm M biểu diễn số hữu tỉ , và cũng chính là điểm biểu diễn số hữu tỉ 1,5 và 1510.

b) Biểu diễn số hữu tỉ −32 trên trục số.

– Chia đoạn thẳng đơn vị (chẳng hạn đoạn từ điểm 0 đến điểm 1) thành hai phần bằng nhau, lấy một đoạn làm đơn vị mới (đơn vị mới bằng 12 đơn vị cũ).

– Đi theo chiều ngược chiều dương của trục số bắt đầu từ điểm 0, ta lấy 3 đơn vị mới đến điểm N. Điểm N biểu diễn số hữu tỉ −32.

Nhận xét: Vì −32=−32=3−2 nên điểm N biểu diễn số −32 cũng là điểm biểu diễn số −32 và 3−2.

3. Số đối của một số hữu tỉ

– Trên trục số hai số hữu tỉ phân biệt có điểm biểu diễn nằm về hai phía của điểm gốc O và cách đều điểm gốc 0 được gọi là hai số đối nhau.

– Số đối của số hữu tỉ a, kí hiệu là –a.

– Số đối của số 0 là 0.

Ví dụ:

– Số đối của số 32 là số –32

– Số đối của số −27 là số −−27=27 .

4. So sánh các số hữu tỉ

4.1 So sánh hai số hữu tỉ

Trong hai số hữu tỉ khác nhau bao giờ cũng có một số nhỏ hơn số kia.

– Nếu số hữu tỉ a nhỏ hơn số hữu tỉ b thì ta viết a < b hay b > a

– Số hữu tỉ lớn hơn 0 gọi là số hữu tỉ dương.

– Số hữu tỉ nhỏ hơn 0 gọi là số hữu tỉ âm.

– Số hữu tỉ 0 không là số hữu tỉ âm cũng không là số hữu tỉ dương

– Nếu a < b và  b < c thì a < c.

4.2 Cách so sánh hai số hữu tỉ

+ Khi hai số hữu tỉ cùng là phân số hoặc cùng là số thập phân, ta dùng quy tắc đã học ở lớp 6 để so sánh.

+ Các trường hợp khác hai trường hợp trên, để so sánh hai số hữu tỉ ta viết chúng cùng về dạng phân số (hoặc cùng dạng số thập phân) rồi so sánh chúng.

Ví dụ:

 a) So sánh −13 và −25

Hai phân số trên cùng là phân số, vì vậy ta sẽ áp dụng quy tắc so sánh hai phân số đã học.

Ta quy đồng để đưa hai phân số về cùng mẫu số dương

−13=−13=(−1)⋅53⋅5=−515;     −25=(−2)⋅35⋅3=−615     

Vì −5>−6 nên −515>−615. Suy ra −13>−25.

b) So sánh 1,206 và 1,3

Hai số trên cùng là số thập phân, vì vậy ta sẽ áp dụng quy tắc so sánh hai số thập phân.

Ta so sánh phần nguyên với nhau, khi phần nguyên bằng nhau ta sẽ so sánh đến phần thập phân, lần lượt từ hàng phần mười, hàng phần trăm, hàng phần nghìn…

1,206 < 1,3 (vì phần nguyên bằng nhau, hàng phần mười có 2 < 3).

c) So sánh – 0,3 và −27

Ta thấy hai số trên chưa cùng là phân số hoặc số thập phân, vì vậy ta đưa chúng về cùng là phân số hoặc số thập phân sau đó so sánh chúng.

Ta có −0,3=−310, ta sẽ  áp dụng quy tắc so sánh hai phân số −310và −27

Ta có : −310=(−3)⋅710⋅7=−2170;  −27=(−2)⋅107⋅10=−2070   

Vì – 21 < –20 nên −2170<−2070. Suy ra – 0,3 < −27 .

4.3 Minh họa trên trục số

Hai điểm x, y lần lượt biểu diễn hai số hữu tỉ x, y trên trục số :

– Trên trục số nằm ngang: Nếu x < y hay y > x thì điểm x nằm bên trái điểm y.

– Trên trục số thẳng đứng: Nếu x < y hay y > x thì điểm x nằm phía dưới điểm y.

Ví dụ : So sánh hai số: – 2 và −53  

Ta có : −2=−21=−63 mà −63<−53 vậy nên −2<−53 .

Trên trục số nằm ngang điểm – 2 nằm bên trái điểm −53.

Tags : Tags Đại số   Giải bài tập   Tập hợp Q các số hữu tỉ   toán 7
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải SGK Toán lớp 2 Tập 1 trang 50, 51, 52 Bài 13): Bài toán về nhiều hơn, ít hơn một số đơn vị | Kết nối tri thức

Next post

Giáo án Toán 8 Chương 4: Bất phương trình bậc nhất một ẩn (2023)

Bài liên quan:

20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7

Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7

Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới

Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án

Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)

Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7

Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  2. Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  3. 20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7
  4. Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới
  5. Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án
  6. Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)
  7. Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  8. Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7
  9. Giáo án Toán 7 Bài 1 (Kết nối tri thức 2023): Tập hợp các số hữu tỉ
  10. Giáo án Toán 7 Kết nối tri thức (cả năm) mới nhất 2023
  11. Vở thực hành Toán 7 Kết nối tri thức | Giải VTH Toán 7 Tập 1, Tập 2 hay, chi tiết
  12. Vở thực hành Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  13. Lý thuyết Toán lớp 7 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 7 | Kết nối tri thức
  14. Sách bài tập Toán 7 Kết nối tri thức | SBT Toán 7 | Giải SBT Toán 7 | Giải sách bài tập Toán 7 hay nhất | Giải SBT Toán 7 Tập 1, Tập 2 | Giải SBT Toán lớp 7 Kết nối tri thức | SBT Toán 7 KNTT
  15. Giải sgk Toán 7 Kết nối tri thức | Giải Toán 7 | Giải Toán lớp 7 | Giải bài tập Toán 7 hay nhất | Giải Toán 7 Tập 1, Tập 2 Kết nối tri thức
  16. Sách bài tập Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  17. Giải SGK Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  18. 20 câu Trắc nghiệm Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  19. Lý thuyết Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  20. 21 Bài tập Cộng, trừ, nhân, chia số hữu tỉ có đáp án – Toán 7
  21. Bài giảng điện tử Cộng, trừ, nhân, chia số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  22. Giáo án Toán 7 Bài 2 (Kết nối tri thức 2023): Cộng, trừ, nhân, chia số hữu tỉ
  23. Vở thực hành Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  24. Sách bài tập Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  25. Giải SGK Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  26. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 14
  27. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 11, 12, 13
  28. Giải SGK Toán 7 (Kết nối tri thức): Luyện tập chung trang 14
  29. 20 câu Trắc nghiệm Lũy thừa với số mũ tự nhiên của 1 số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  30. Lý thuyết Lũy thừa với số mũ tự nhiên của một số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  31. Vở thực hành Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  32. 20 Bài tập Lũy thừa với số mũ tự nhiên của một số hữu tỉ có đáp án – Toán 7
  33. Sách bài tập Toán 7 Bài 3 (Kết nối tri thức): Luỹ thừa với số mũ tự nhiên của một số hữu tỉ
  34. Giải SGK Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  35. 22 câu Trắc nghiệm Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  36. Lý thuyết Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  37. Bài giảng điện tử Thứ tự thực hiện các phép tính. Quy tắc chuyển vế | Kết nối tri thức Giáo án PPT Toán 7
  38. Giáo án Toán 7 Bài 4 (Kết nối tri thức 2023): Thứ tự thực hiện các phép tính. quy tắc chuyển vế
  39. Vở thực hành Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện phép tính. Quy tắc chuyển vế
  40. 20 Bài tập Thứ tự thực hiện các phép tính. Quy tắc chuyển vế có đáp án – Toán 7
  41. Sách bài tập Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  42. Giải SGK Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  43. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 23
  44. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 19, 20, 21
  45. Toán lớp 7 (Kết nối tri thức) Luyện tập chung trang 23
  46. 32 câu Trắc nghiệm Toán lớp 7 Chương 1 (Kết nối tri thức) có đáp án: Số hữu tỉ
  47. Lý thuyết Toán 7 Chương 1 (Kết nối tri thức 2023): Số hữu tỉ hay, chi tiết
  48. Giáo án Toán 7 (Kết nối tri thức 2023): Bài tập cuối chương 1
  49. Vở thực hành Toán 7 (Kết nối tri thức): Bài ôn tập cuối chương 1
  50. 24 Bài tập Toán 7 Chương 1 có đáp án: Số hữu tỉ
  51. Sách bài tập Toán 7 (Kết nối tri thức): Ôn tập chương 1 trang 20, 21
  52. Giải SGK Toán 7 (Kết nối tri thức): Bài tập cuối chương 1

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán