Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 8

20 Bài tập Tứ giác (sách mới) có đáp án – Toán 8

By admin 15/10/2023 0

Bài tập Toán 8 Tứ giác

A. Bài tập Tứ giác

Bài 1. Cho hình vẽ. Tìm x.

Lý thuyết Toán 8 Cánh diều Bài 2: Tứ giác

Hướng dẫn giải

Áp dụng tính chất về góc vào tứ giác MNPQ, ta có:

 

M^+N^+P^+Q^=360°

Hay 3x + 4x + x + 2x = 360°

Suy ra 10x = 360° hay x = 36°.

Vậy x = 36°.

Bài 2. Cho tứ giác ABCD có A^:B^:C^:D^=6:5:4:3 . Tính các góc của tứ giác ABCD.

Hướng dẫn giải

Lý thuyết Toán 8 Cánh diều Bài 2: Tứ giác

Tứ giác ABCD có A^+B^+C^+D^=360°

Mặt khác , theo tính chất dãy tỷ số bằng nhau ta có:

 

A^6+B^5+C^4+D^3=A^+B^+C^+D^6+5+4+3=360°18=20°

Suy ra A^ = 20°. 6 = 120° ; B^ = 20°. 5 = 100° ;

C^ = 20°. 4 = 80°; D^=20°. 3=60° .

Vậy A^ = 120°; B^ =100°; C^ = 80°; D^ = 60°.

Bài 3. Chứng minh rằng trong tứ giác, mỗi đường chéo nhỏ hơn nửa chu vi tứ giác.

Hướng dẫn giải

Lý thuyết Toán 8 Cánh diều Bài 2: Tứ giác

Xét tứ giác ABCD có đường chéo AC:

AC < AB + BC (bất đẳng thức trong tam giác ABC)

AC < AD + DC (bất đẳng thức trong tam giác ADC)

Suy ra 2AC < AB + BC + AD + DC.

Do đó AC<AB+BC+AD+DC​2

Chứng minh tương tự, BD<AB+BC+AD+DC​2 .

Vậy trong tứ giác, mỗi đường chéo nhỏ hơn nửa chu vi tứ giác.

Bài 4. Cho bốn điểm E, F, G, H (hình vẽ).

Lý thuyết Toán 8 Chân trời sáng tạo Bài 2: Tứ giác

Vẽ một tứ giác có các đỉnh là bốn điểm đã cho và tìm các yếu tố sau:

a) cạnh kề, cạnh đối của cạnh GH.

b) góc đối của EFG^ .

c) hai đường chéo của tứ giác.

Hướng dẫn giải

Lý thuyết Toán 8 Chân trời sáng tạo Bài 2: Tứ giác

a) Cạnh kề của cạnh GH là cạnh GF; cạnh đối của cạnh GH là cạnh EF.

b) Góc đối của EFG^ là EHG^ .

c) Hai đường chéo của tứ giác là EG và FH.

Bài 5. Tính x trong mỗi hình sau:

Lý thuyết Toán 8 Chân trời sáng tạo Bài 2: Tứ giác

Hướng dẫn giải

a) Theo định lí tổng các góc của một tứ giác, trong tứ giác ABCD có:

A^+B^+C^+D^=360o

Suy ra x=A^=360o−B^+C^+D^

x=360o−60o+60o+120o=360o−240o=120o

Vậy x=120o .

b) Theo định lí tổng các góc của một tứ giác, trong tứ giác EGHF có: E^+G^+H^+F^=360o

Suy ra x=H^=360o−E^+G^+F^

x=360o−140o+130o+55o=360o−325o=35o

Vậy x=35o

Bài 6. Tứ giác ABCD có C^=50° ; B^=60° ; A^−B^=40° . Tính số đo các góc A và D.

Lý thuyết Toán 8 Chân trời sáng tạo Bài 2: Tứ giác

Hướng dẫn giải

Theo giả thiết: A^−B^=40onên A^=40o+B^=40o+60o=100o

Theo định lí tổng các góc của một tứ giác, trong tứ giác ABCD có:

A^+B^+C^+D^=360o

Suy ra D^=360o−B^+C^+A^

D^=360o−60o+50o+100o=360o−210o=150o

Vậy A^=100o;D^=150o

Bài 7. Tính góc chưa biết của các tứ giác trong hình sau:

Lý thuyết Toán 8 Kết nối tri thức Bài 10: Tứ giác

Hướng dẫn giải

+ Tứ giác ABCD có 3 góc vuông nên A^=B^=C^=90°. Theo định lí về tổng các góc trong một tứ giác ta có: A^+B^+C^+D^=360°

Suy ra D^=360°−(A^+B^+C^)=360°−(90°+90°+90°)=90°.

+ Vì MNx^+MNP^=180°(hai góc kề bù)⇒MNP^=180°−85°=95°.

NPy^+NPQ^=180°(hai góc kề bù) ⇒NPQ^=180°−100°=80°.

Theo định lí về tổng các góc trong một tứ giác ta có:M^+MNP^+NPQ^+Q^=360°

Suy ra Q^=360°−(M^+MNP^+NPQ^)=360°−130°−95°−80°=55°.

Bài 8. Tính góc chưa biết của tứ giác trong hình dưới đây, biết I^+K^=180° .

Lý thuyết Toán 8 Kết nối tri thức Bài 10: Tứ giác

Hướng dẫn giải

Vì I^+K^=180°mà K^=60°⇒I^=120°

Theo định lí về tổng các góc trong một tứ giác ta có:

I^+K^+M^+L^=360°⇒M^=360°−(I^+K^+L^)=360°−(120°+60°+135°)=45°.

Bài 9. Tứ giác MNEF có MN = MF, NE = FE, được gọi là hình cái diều.

a) Chứng minh ME là đường trung trực của đoạn thẳng NF.

b) Tính các góc E, F biết M^=100°,N^=105°.

Hướng dẫn giải

Bài 10: Tứ giác

a) Xét ΔMNE và ΔMFE  có:

MN = MF⇒NH=FH (giả thiết)

NE = FE (giả thiết)

ME chung

Do đó ΔMNE  = ΔMFE  (cạnh – cạnh – cạnh) ⇒FME^=NME^

Gọi H là giao điểm của ME và NF

Xét ΔMNHvà ΔMFH  có:

MN = MF ( giả thiết)

FME^=NME^ (chứng minh trên)

MH chung

Do đó ΔMNH = ΔMFH  (cạnh – góc – cạnh)

⇒NH=FH(1)

Và MHN^=MHF^  mà MHN^+MHF^=180°⇒MHN^=MHF^=90°

⇒ME⊥NF(2)

Từ (1) và (2) suy ra ME là đường trung trực của đoạn thẳng NF.

b) Vì ΔMNE=ΔMFE⇒MNE^=MFE^=105°

Theo định lí về tổng các góc trong một tứ giác suy ra NEF^=50°.

B. Lý thuyết Tứ giác

1. Tứ giác lồi

+ Tứ giác ABCD là hình gồm bốn đoạn thẳng AB, BC , CD, DA trong đó không có hai đoạn thẳng nào nằm trên cùng một đoạn thẳng.

Ví dụ 1: Hình a, b, c là tứ giác, hình d không phải là tứ giác.

Tứ giác (Lý thuyết Toán lớp 8) | Kết nối tri thức

Trong tứ giác ABCD, các điểm A, B, C, D là các đỉnh, các đoạn thẳng AB, BC, CD, DA là các cạnh.

+ Tứ giác lồi là tứ giác mà hai đỉnh thuộc một cạnh bất kì luôn nằm về một phía của đường thẳng đi qua hai đỉnh còn lại (Hình a ở ví dụ 1 là tứ giác lồi, hình b, c không phải tứ giác lồi).

+ Trong tứ giác lồi, các góc ABC, BCD, CDA, DAB gọi là các góc của tứ giác và kí hiệu đơn giản lần lượt là B^,C^,D^,A^.

Chú ý:

+ Từ nay, khi nói đến tứ giác mà không giải thích gì thêm, ta hiểu đó là tứ giác lồi.

+ Tứ giác ABCD trong hình a còn được gọi tên là tứ giác BCDA, CDAB, DABC, ADCB, DCBA, CBAD, BADC.

Ví dụ 2: Cho bốn điểm M, N, P, Q như hình, kể tên một tứ giác có các đỉnh là bốn điểm đã cho.

Tứ giác (Lý thuyết Toán lớp 8) | Kết nối tri thức

+ Tứ giác MNPQ (hoặc NPQM, PQMN, QMNP, MQPN, QPNM, PNMQ, NMQP).

Ví dụ 3: Quan sát tứ giác MNPQ dưới đây:

Tứ giác (Lý thuyết Toán lớp 8) | Kết nối tri thức

Ta có:

+ Hai đỉnh không cùng thuộc một cạnh gọi là hai đỉnh đối nhau. Đoạn thẳng nối hai đỉnh đối nhau là một đường chéo, có hai đường chéo là MP và NQ.

+ Cặp cạnh MN, PQ và MQ, NP là các cặp cạnh đối.

+ Cặp góc M, P và N, Q là các cặp góc đối.

2. Tổng các góc của một tứ giác

+ Định lí: Tổng các góc trong một tứ giác bằng 360°.

Ví dụ 4: Cho tứ giác MNPQ như hình bên, hãy tính góc M.

Tứ giác (Lý thuyết Toán lớp 8) | Kết nối tri thức

Giải

Vì MN⊥NP  và MQ⊥QP  nên N^=Q^=90°.

Theo định lí về tổng các góc trong một tứ giác ta có: M^+N^+P^+Q^=360°

Do đó M^=360°−(N^+P^+Q^)=360°−(90°+90°+120°)=60°

Vậy M^=60°.

Video bài giảng Toán 8 Bài 10: Tứ giác – Kết nối tri thức

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Lý thuyết Góc (Chân trời sáng tạo 2023) hay, chi tiết | Toán lớp 6

Next post

Giáo án Dùng máy tính cầm tay để tính toán với số gần đúng và tính các số đặc trưng của mẫu số liệu thống kê (Chân trời sáng tạo 2023) | Giáo án Toán 10

Bài liên quan:

Bài giảng điện tử Đơn thức | Kết nối tri thức Giáo án PPT Toán 8

Bài giảng điện tử Toán 8 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 8

20 câu Trắc nghiệm Đơn thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8

Trọn bộ Trắc nghiệm Toán 8 Kết nối tri thức có đáp án

Giải sgk tất cả các môn lớp 8 Kết nối tri thức | Giải sgk các môn lớp 8 chương trình mới

20 Bài tập Đơn thức nhiều biến. Đa thức nhiều biến (sách mới) có đáp án – Toán 8

Giải VTH Toán 8 Kết nối tri thức | Vở thực hành Toán 8 Kết nối tri thức (hay, chi tiết)

Giải SBT Toán 8 Kết nối tri thức | Sách bài tập Toán 8 Kết nối tri thức (hay, chi tiết)

Leave a Comment Hủy

Mục lục

  1. Bài giảng điện tử Đơn thức | Kết nối tri thức Giáo án PPT Toán 8
  2. Bài giảng điện tử Toán 8 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 8
  3. 20 câu Trắc nghiệm Đơn thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  4. Trọn bộ Trắc nghiệm Toán 8 Kết nối tri thức có đáp án
  5. Giải sgk tất cả các môn lớp 8 Kết nối tri thức | Giải sgk các môn lớp 8 chương trình mới
  6. 20 Bài tập Đơn thức nhiều biến. Đa thức nhiều biến (sách mới) có đáp án – Toán 8
  7. Giải VTH Toán 8 Kết nối tri thức | Vở thực hành Toán 8 Kết nối tri thức (hay, chi tiết)
  8. Giải SBT Toán 8 Kết nối tri thức | Sách bài tập Toán 8 Kết nối tri thức (hay, chi tiết)
  9. Giải sgk Toán 8 (cả 3 bộ sách) | Giải bài tập Toán 8 (hay, chi tiết)
  10. Lý thuyết Đơn thức (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  11. Tổng hợp Lý thuyết Toán lớp 8 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 8 Kết nối tri thức hay, chi tiết
  12. Giáo án Toán 8 Bài 1 (Kết nối tri thức 2023): Đơn thức
  13. Giáo án Toán 8 Kết nối tri thức năm 2023 (mới nhất)
  14. Giải SGK Toán 8 Bài 1 (Kết nối tri thức): Đơn thức
  15. Giải sgk Toán 8 Kết nối tri thức | Giải bài tập Toán 8 Kết nối tri thức Tập 1, Tập 2 (hay, chi tiết)
  16. Bài giảng điện tử Đa thức | Kết nối tri thức Giáo án PPT Toán 8
  17. 20 câu Trắc nghiệm Đa thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  18. Lý thuyết Đa thức (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  19. Giáo án Toán 8 Bài 2 (Kết nối tri thức 2023): Đa thức
  20. Giải SGK Toán 8 Bài 2 (Kết nối tri thức): Đa thức
  21. Bài giảng điện tử Phép cộng và phép trừ đa thức | Kết nối tri thức Giáo án PPT Toán 8
  22. 20 câu Trắc nghiệm Phép cộng và phép trừ đa thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  23. 20 Bài tập Các phép tính với đa thức nhiều biến (sách mới) có đáp án – Toán 8
  24. Lý thuyết Phép cộng và phép trừ đa thức (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  25. Giáo án Toán 8 Bài 3 (Kết nối tri thức 2023): Phép cộng và phép trừ đa thức
  26. Giải SGK Toán 8 Bài 3 (Kết nối tri thức): Phép cộng và phép trừ đa thức
  27. Bài giảng điện tử Luyện tập chung trang 17 | Kết nối tri thức Giáo án PPT Toán 8
  28. Giải SGK Toán 8 (Kết nối tri thức) Luyện tập chung trang 17
  29. Bài giảng điện tử Phép nhân đa thức | Kết nối tri thức Giáo án PPT Toán 8
  30. 20 câu Trắc nghiệm Phép nhân đa thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  31. Lý thuyết Phép nhân đa thức (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  32. Giáo án Toán 8 Bài 4 (Kết nối tri thức 2023): Phép nhân đa thức
  33. Giải SGK Toán 8 Bài 4 (Kết nối tri thức): Phép nhân đa thức
  34. Bài giảng điện tử Phép chia đa thức cho đơn thức | Kết nối tri thức Giáo án PPT Toán 8
  35. 20 câu Trắc nghiệm Phép chia đa thức cho đơn thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  36. Lý thuyết Phép chia đa thức cho đơn thức (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  37. Giáo án Toán 8 Bài 5 (Kết nối tri thức 2023): Phép chia đa thức cho đơn thức
  38. Giải SGK Toán 8 Bài 5 (Kết nối tri thức): Phép chia đa thức
  39. Bài giảng điện tử Luyện tập chung trang 25 | Kết nối tri thức Giáo án PPT Toán 8
  40. Giáo án Toán 8 (Kết nối tri thức 2023) Luyện tập chung trang 25
  41. Giải SGK Toán 8 (Kết nối tri thức): Luyện tập chung trang 25
  42. Bài giảng điện tử Bài tập cuối chương 1 trang 27 | Kết nối tri thức Giáo án PPT Toán 8
  43. Sách bài tập Toán 8 (Kết nối tri thức) Bài tập cuối chương 1
  44. Lý thuyết Toán 8 Chương 1 (Kết nối tri thức 2023): Đa thức hay, chi tiết
  45. Giáo án Toán 8 (Kết nối tri thức 2023) Bài tập cuối chương 1
  46. Giải SGK Toán 8 (Kết nối tri thức): Bài tập cuối chương 1 trang 27
  47. Bài giảng điện tử Hiệu hai bình phương. Bình phương của một tổng hay một hiệu | Kết nối tri thức Giáo án PPT Toán 8
  48. 20 câu Trắc nghiệm Hiệu hai bình phương. Bình phương của một tổng hay một hiệu (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  49. Lý thuyết Hiệu hai bình phương. Bình phương của một tổng hay một hiệu (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  50. Giáo án Toán 8 Bài 6 (Kết nối tri thức 2023): Hiệu hai bình phương. Bình phương của một tổng hay một hiệu
  51. Giải SGK Toán 8 Bài 6 (Kết nối tri thức): Hiệu hai bình phương. Bình phương của một tổng hay một hiệu
  52. Bài giảng điện tử Lập phương của một tổng. Lập phương của một hiệu | Kết nối tri thức Giáo án PPT Toán 8

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán