Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 8

Lý thuyết Toán 8 Chương 4: Bất phương trình bậc nhất một ẩn (mới 2023 + bài tập)

By admin 22/10/2023 0

Lý thuyết Toán 8 Chương 4: Bất phương trình bậc nhất một ẩn

A. Lý thuyết

1. Bất đẳng thức

Hệ thức dạng a < b (hay dạng a > b; a ≥ b; a ≤ b ) được gọi là bất đẳng thức a gọi là vế trái, b gọi là vế phải của bất đẳng thức.

2. Liên hệ giữa thứ tự và phép cộng

Tính chất: Cho ba số a,b và c, ta có

Nếu a < b thì a + c < b + c.

Nếu a ≤ b thì a + c ≤ b + c.

Nếu a > b thì a + c > b + c.

Nếu a ≥ b thì a + c ≥ b + c.

3. Liên hệ giữa thứ tự và phép nhân với số dương

a) Tính chất

Khi nhân cả hai vế của một bất đẳng thức với cùng một số dương ta được một bất đẳng thức mới cùng chiều với bất đẳng thức đã cho

b) Tổng quát

Với ba số a, b và c mà c > 0, ta có:

Nếu a < b thì ac < bc

Nếu a ≤ b thì ac ≤ bc

Nếu a > b thì ac > bc

Nếu a ≥ b thì ac ≥ bc.

4. Liên hệ giữa thứ tự và phép nhân với số âm

a) Tính chất

Khi nhân cả hai vế của một bất đẳng thức với cùng một số âm ta được một bất đẳng thức mới ngược chiều với bất đẳng thức đã cho

b) Tổng quát

Với ba số a, b và c mà c < 0, ta có:

Nếu a < b thì ac > bc

Nếu a ≤ b thì ac ≥ bc

Nếu a > b thì ac < bc

Nếu a ≥ b thì ac ≤ bc.

5. Bất phương trình một ẩn

Bất phương trình ẩn x là hệ thức A( x ) > B( x ) hoặc A( x ) < B( x ) hoặc A( x ) ≥ B( x ) hoặc A( x ) ≤ B( x ).

Trong đó: A( x ) gọi là vế trái; B( x ) gọi là vế phải.

Nghiệm của bất phương trình là giá trị của ẩn để khi thay vào bất phương trình ta được một khẳng định đúng.

6. Định nghĩa bất phương trình bậc nhất một ẩn

Bất phương trình dạng ax + b < 0 (hoặc ax + b > 0, ax + b < 0, ax + b ≤ 0, ax + b ≥ 0 ) trong đó a và b là hai số đã cho, a ≠ 0, được gọi là bất phương trình bậc nhất một ẩn.

7. Hai quy tắc biến đổi

a) Quy tắc chuyển vế

Khi chuyển một hạng tử của bất phương trình từ vế này sang vế kia ta đổi dấu hạng tử đó.

b) Quy tắc nhân với một số.

Khi nhân hai vế của bất phương trình với cùng một số khác 0, ta phải:

Giữ nguyên chiều bất phương trình nếu số đó dương.

Đổi chiều bất phương trình nếu số đó âm.

8. Giá trị tuyệt đối

Giá trị tuyệt đối của số a, được kí hiệu là | a |, ta định nghĩa như sau:

Tổng hợp Lý thuyết chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

9. Các dạng toán liên quan đến giá trị tuyệt đối

a) Phương pháp chung

Bước 1: Áp dụng định nghĩa giá trị tuyệt đối để loại bỏ dấu giá trị tuyệt đối

Bước 2: Giải các phương trình sau khi phá dấu giá trị tuyệt đối

Bước 3: Chọn nghiệm thích hợp trong từng trường hợp đang xét

Bước 4: Kết luận nghiệm

b) Một số dạng cơ bản

DạngTổng hợp Lý thuyết chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

hoặcTổng hợp Lý thuyết chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Dạng | A | = | B | ⇔ A = B hay A = – B.

Dạng phương trình có chứa nhiều dấu giá trị tuyệt đối

+ Xét dấu các biểu thức chứa ẩn nằm trong dấu GTTĐ.

+ Chia trục số thành nhiều khoảng sao cho trong mỗi khoảng, các biểu thức nói trên có dấu xác định.

+ Xét từng khoảng, khử các dấu GTTĐ, rồi giải PT tương ứng trong trường hợp đó.

+ Kết hợp các trường hợp đã xét, suy ra số nghiệm của PT đã cho.

B. Trắc nghiệm & Tự luận

I. Bài tập trắc nghiệm

Bài 1: Trong các khẳng định sau đây, khẳng định nào sai?

( 1 )    ( – 4 ).5 < ( – 5 ).4

( 2 )    ( – 7 ).12 ≥ ( – 7 ).11

( 3 )    – 4x2 > 0

   A. ( 1 ),( 2 ) và ( 3 )   B. ( 1 ),( 2 )

   C. ( 1 )   D. ( 2 ),( 3 )

+ Ta có: ( – 4 ).5 = 4.( – 5 ) → Khẳng định ( 1 ) sai.

+ Ta có: 12 > 11 ⇒ 12.( – 7 ) < 11.( – 7 ) → Khẳng định ( 2 ) sai.

+ Ta có: x2 ≥ 0 ⇒ – 4x2 ≤ 0 → Khẳng định ( 3 ) sai

Chọn đáp án A.

Bài 2: Cho a + 1 ≤ b + 2. So sánh hai số 2a + 2 và 2b + 4. Khẳng định nào dưới đây đúng ?

   A. 2a + 2 > 2b + 4

   B. 2a + 2 < 2b + 4

   C. 2a + 2 ≤ 2b + 4

   D. 2a + 2 ≥ 2b + 4

Với ba số a, b và c mà c > 0, ta có: Nếu a ≤ b thì ac ≤ bc

Khi đó, ta có: a + 1 ≤ b + 2 ⇒ 2( a + 1 ) ≤ 2( b + 2 ) ⇔ 2a + 2 ≤ 2b + 4.

Chọn đáp án C.

Bài 3: Cho a > b. Khẳng định nào sau đây đúng?

   A. – 3a – 1 > – 3b – 1

   B. – 3( a – 1 ) < – 3( b – 1 )

   C. – 3( a – 1 ) > – 3( b – 1 )

   D. 3( a – 1 ) < 3( b – 1 )

+ Ta có: a > b ⇒ – 3a < – 3b ⇔ – 3a – 1 < – 3b – 1

→ Đáp án A sai.

+ Ta có: a > b ⇒ a – 1 > b – 1 ⇔ – 3( a – 1 ) < – 3( b – 1 )

→ Đáp án B đúng.

+ Ta có: a > b ⇒ a – 1 > b – 1 ⇔ – 3( a – 1 ) < – 3( b – 1 )

→ Đáp án C sai.

+ Ta có: a > b ⇒ a – 1 > b – 1 ⇔ 3( a – 1 ) > 3( b – 1 )

→ Đáp án D sai.

Chọn đáp án B.

Bài 4: Cho a ≥ b. Khẳng định nào sau đây đúng?

   A. 2a – 5 ≤ 2( b – 1 )

   B. 2a – 5 ≥ 2( b – 1 )

   C. 2a – 5 ≥ 2( b – 3 )

   D. 2a – 5 ≤ 2( b – 3 )

+ Ta có: a ≥ b ⇒ 2a ≥ 2b

Mặt khác, ta có: – 5 ≥ – 6

Khi đó 2a – 5 ≥ 2b – 6 hay 2a – 5 ≥ 2( b – 3 ).

Chọn đáp án C.

Bài 5: Cho x > 0. Khẳng định nào sau đây đúng?

   A. ( x + 1 )2 ≤ 0

   B. ( x + 1 )2 > 1

   C. ( x + 1 )2 ≤ 1

   D. ( x + 1 )2 < 1

Ta có: x > 0 ⇒ x + 1 > 1 ⇒ ( x + 1 )2 > 12.

Hay ( x + 1 )2 > 1.

Chọn đáp án B.

Bài 6: Trong các khẳng định sau đây, khẳng định nào đúng?

4 + ( – 3 ) ≤ 5    ( 1 )

6 + ( – 2 ) ≤ 7 + ( – 2 )    ( 2 )

24 + ( – 5 ) > 25 + ( – 5 )    ( 3 )

   A. ( 1 ),( 2 ),( 3 )   B. ( 1 ),( 3 )

   C. ( 1 ),( 2 )   D. ( 2 ),( 3 )

+ Ta có: -3 < 1 nên 4 + (-3) < 4 + 1 hay 4 + (-3) < 5

→ Khẳng định ( 1 ) đúng.

+ Ta có: 6 ≤ 7 ⇒ 6 + (-2) ≤ 7 + (-2)

→ Khẳng định ( 2 ) đúng.

+ Ta có: 24 < 25 ⇒ 24 + ( – 5 ) < 25 + ( – 5 )

→ Khẳng định ( 3 ) sai.

Chọn đáp án C.

Bài 7: Cho a – 3 > b – 3. So sánh hai số a và b

   A. a ≥ b   B. a < b

   C. a > b   D. a ≤ b

Ta có a – 3 > b – 3 ⇒ ( a – 3 ) + 3 > ( b – 3 ) + 3 ⇔ a > b

Chọn đáp án C.

Bài 8: Cho a > b. So sánh 5 – a với 5 – b

   A. 5 – a ≥ 5 – b.

   B. 5 – a > 5 – b.

   C. 5 – a ≤ 5 – b.

   D. 5 – a < 5 – b.

Ta có: a > b ⇒ – a < – b ⇔ 5 + ( – a ) < 5 + ( – b ) hay 5 – a < 5 – b.

Chọn đáp án D.

Bài 9: Một Ampe kế có giới hạn đo là 25 ampe. Gọi x( A ) là số đo cường độ dòng điện có thể đo bằng Ampe kế. Khẳng định nào sau đây đúng?

   A. x ≤ 25   B. x < 25

   C. x > 25   D. x ≥ 25

Một Ampe kế đo cường độ dòng điện thì cường độ dòng điện tối đa mà Ampe đo được là giới hạn đo của ampe kế đó.

Khi đó: x ≤ 25

Chọn đáp án A.

Bài 10: Cho a > b, c > d. Khẳng định nào sau đây đúng?

   A. a + d > b + c

   B. a + c > b + d

   C. b + d > a + c

   D. a + b > c + d

Theo giả thiết ta có: a > b, c > d ⇒ a + c > b + d.

Chọn đáp án B.

Bài 11: Nghiệm x = 3 là nghiệm của bất phương trình nào sau đây?

   A. 5 – x < 1

   B. 3x + 1 < 4

   C. 4x – 11 > x

   D. 2x – 1 > 3

Ta có:

+ 5 – x < 1 ⇔ 4 < x

+ 3x + 1 < 4 ⇔ 3x < 3 ⇔ x > 1

+ 4x – 11 > x ⇔ 3x > 11 ⇔ x > 11/3

+ 2x – 1 > 3 ⇔ 2x > 4 ⇔ x > 2

Vậy x = 3 là nghiệm của bất phương trình 2x – 1 > 3

Chọn đáp án D.

Bài 12: Tập nghiệm nào sau đây là tập nghiệm của bất phương trình: x ≤ 2 ?

   A. S = { x| x ≥ 2 }.

   B. S = { x| x ≤ 2 }.

   C. S = { x| x ≥ – 2 }.

   D. S = { x| x < 2 }.

Tập nghiệm của bất phương trình: x ≤ 2 là S = { x| x ≤ 2 }.

Chọn đáp án B.

Bài 13: Hình vẽ sau là tập nghiệm của bất phương trình nào?

Bài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

   A. 2x – 4 < 0

   B. 2x – 4 > 0

   C. 2x – 4 ≤ 0

   D. 2x – 4 ≥ 0

Ta có:

+ 2x – 4 < 0 ⇔ x < 2

+ 2x – 4 > 0 ⇔ x > 2

+ 2x – 4 ≤ 0 ⇔ x ≤ 2

+ 2x – 4 ≥ 0 ⇔ x ≥ 2

Chọn đáp án B.

Bài 14: Cho bất phương trình 3x – 6 > 0. Trong các bất phương trình sau, bất phương trình nào tương đương với bất phương trình đã cho?

   A. 2x – 4 < 0

   B. 2x – 4 ≥ 0

   C. x > 2

   D. 1 – 2x < 1

Ta có: 3x – 6 > 0 ⇔ 3x > 6 ⇔ x > 2

Vậy bất phương trình x > 2 tương đương với bất phương trình đã cho.

Chọn đáp án C.

Bài 15: Bất phương trình ax + b > 0 vô nghiệm khi

Bài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp ánBài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp ánBài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Nếu a > 0 thì ax + b > 0 ⇔ x > – b/a nên S ≠ Ø

Nếu a < 0 thì ax + b > 0 ⇔ x < – b/a nên S ≠ Ø

Nếu a = 0 thì ax + b > 0 có dạng 0x + b > 0

Với b > 0 thì S = R.

Với b ≤ 0 thì S = Ø

Chọn đáp án D.

Bài 16: Bất phương trình ax + b ≤ 0 vô nghiệm khi?

Bài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án Bài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án Bài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Nếu a > 0 thì ax + b ≤ 0 ⇔ x ≤ – b/a nên S ≠ Ø

Nếu a < 0 thì ax + b ≤ 0 ⇔ x ≥ – b/a nên S ≠ Ø

Nếu a = 0 thì ax + b ≤ 0 có dạng 0x + b ≤ 0

Với b ≤ 0 thì S = R.

Với b > 0 thì S = Ø

Chọn đáp án A.

Bài 17: Tổng các nghiệm nguyên của bất phương trình x( 2 – x ) ≥ x( 7 – x ) – 6( x – 1 ) trên đoạn [ – 10;10 ] bằng?

   A. 5   B. 6

   C. 21   D. 40

Bài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án D.

Bài 18: Tổng các nghiệm nguyên của bất phương trình:Bài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án là?

   A. 15   B. 11

   C. 26   D. 0

Điều kiện: x > 4

Bất phương trình tương đương: x – 2 ≤ 4 ⇔ x ≤ 6 ⇒ 4 < x ≤ 6 ⇒ x ∈ 5;6 → S = 11

Chọn đáp án B.

Bài 19: Tập nghiệm của bất phương trình: ( x – 1 )2 + ( x – 3 )2 + 15 < x2 + ( x – 4 )2 là?

   A. S = x > 0   B. x < 0

   C. S = R   D. S = Ø

Bất phương trình tương đương:

⇔ x2 – 2x + 1 + x2 – 6x + 9 + 15 < x2 + x2 – 8x + 16

⇔ 2x2 – 8x + 10 + 15 < 2x2 – 8x + 16

⇔ 0.x < – 9 : Vô nghiệm.

Chọn đáp án D.

Bài 20: Tập nghiệm S của bất phương trình: 5x – 1 ≥ (2x)/5 + 3 là?

   A. S = R   B. S = ( – ∞ ;2 )

   C. S = x ≤ 7/15   D. x ≥ 20/23

Ta có: 5x – 1 ≥ (2x)/5 + 3 ⇔ 25x – 5 ≥ 2x + 15 ⇔ 23x ≥ 20 ⇔ x ≥ 20/23.

Vậy tập nghiệm của bất phương trình là x ≥ 20/23

Chọn đáp án D.

Bài 21: Bất phương trìnhBài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án có bao nhiêu nghiệm nguyên lớn hơn -10 ?

   A. 4   B. 5

   C. 9   D. 10

Bài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án B.

Bài 22: Tập nghiệm S của bất phương trình: ( 1 – √ 2 )x < 2√ – 2 là?

   A. x < √ 2    B. x > √ 2

   C. S = R   D. S = Ø

Bài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án B.

Bài 23: Bất phương trình ( 2x – 1 )( x + 3 ) – 3x + 1 ≤ ( x – 1 )( x + 3 ) + x2 – 5 có tập nghiệm là?

   A. x < – 2/3    B. x ≥ 1/2

   C. S = R   D. S = Ø

Ta có: ( 2x – 1 )( x + 3 ) – 3x + 1 ≤ ( x – 1 )( x + 3 ) + x2 – 5

⇔ 2x2 + 5x – 3 – 3x + 1 ≤ x2 + 2x – 3 + x2 – 5 ⇔ 0x ≤ – 6

⇔ x ∈ Ø → S = Ø

Chọn đáp án D.

Bài 24: Bất phương trình ( m2 – 3m )x + m < 2 – 2x vô nghiệm khi?

   A. m ≠ 1   B. m ≠ 2

   C. m = 1,m = 2   D. m ∈ R

Bất phương trình tương đương: ( m2 – 3m + 2 )x < 2 – m

Rõ ràng nếu m2 – 3m + 2 ≠ 0 ⇔ Bài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp ánbất phương trình luôn có nghiệm.

Với m = 1, bất phương trình trở thành: 0x < 1: Vô nghiệm

Với m = 2, bất phương trình trở thành 0x < 0: Vô nghiệm

Chọn đáp án C.

Bài 25: Bất phương trình m2( x – 1 ) ≥ 9x + 3m có nghiệm đúng với mọi x khi?

   A. m = 1   B. m = – 3

   C. m = Ø    D. m = – 1

Bất phương trình tương đương: ( m2 – 9 )x ≥ m2 + 3m

Dễ thấy nếu m2 ≠ 9 ⇔ m ≠ ± 3 thì phương trình không thể có nghiệm đúng với mọi x ∈ R

Với m = 3, ta có bất phương trình trở thành: 0x ≥ 18: Vô nghiệm.

Với m = – 3, ta có phương trình trở thành: 0x ≥ 0: Nghiệm đúng với mọi x ∈ R

Chọn đáp án B.

Bài 26: Tìm tất cả các giá trị của tham số m để bất phương trình m( x – 1 ) < 3 – x có nghiệm?

   A. m ≠ 1   B. m = 1

   C. m ∈ R   D. m ≠ 3

Ta có: m(x – 1) < 3 – x

Bài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Bất phương trình tương đương là ( m + 1 )x < m + 3

Rõ ràng với m ≠ – 1 thì bất phương trình luôn có nghiệm

Với m = – 1 ta có bất phương trình có dạng: 0x < 2 luôn đúng với mọi x

Vậy bất phương trình có nghiệm với mọi m.

Chọn đáp án C.

Bài 27: Tìm tất cả các giá trị của tham số m để bất phương trình ( m2 + m – 6 )x ≥ m + 1 có nghiệm?

   A. m ≠ 2   B. m ≠ 2, m ≠ 3

   C. m ∈ R   D. m ≠ 3

Rõ ràng: m2 + m – 6 ≠ 0 thì bất phương trình luôn có nghiệm

Xét m2 + m – 6 = 0

Bài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Từ hai trường hợp, ta được bất phương trình có nghiệm khi m ≠ 2

Chọn đáp án A.

Bài 28: Biểu thức A = | 4x | + 2x – 1 với x < 0, rút gọn được kết quả là?

   A. A = 6x – 1

   B. A = 1 – 2x

   C. A = – 1 – 2x

   D. A = 1 – 6x

Ta có: x < 0 ⇒ | 4x | = – 4x

Khi đó ta có: A = | 4x | + 2x – 1 = – 4x + 2x – 1 = – 2x – 1

Chọn đáp án C.

Bài 29: Tập nghiệm của phương trình: | 3x + 1 | = 5

   A. S = – 2    B. S = 4/3

   C. S = – 2;4/3    D. S = Ø

Ta có: | 3x + 1 | = 5 ⇔ Bài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Vậy tập nghiệm của phương trình đã cho là S = { – 2;4/3 }

Chọn đáp án C.

Bài 30: Tập nghiệm của phương trình | 2 – 3x | = | 5 – 2x | là?

   A. S = { – 3;1 }   B. S = { – 3;7/5 }

   C. S = { 0;7/5 }   D. S = { – 3;1 }

Ta có: | 2 – 3x | = | 5 – 2x |Bài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Vậy tập nghiệm của phương trình là S = { – 3;7/5 }

Chọn đáp án B.

Bài 31: Giá trị m để phương trình | 3 + x | = m có nghiệm x = – 1 là?

   A. m = 2   B. m = – 2

   C. m = 1   D. m = – 1

Phương trình đã cho có nghiệm x = – 1 nên ta có: | 3 + ( – 1 ) | = m ⇔ m = 2.

Vậy m = 2 là giá trị cần tìm.

Chọn đáp án A.

Bài 32: Giá trị của m để phương trình | x – m | = 2 có nghiệm là x = 1 ?

   A. m ∈ { 1 }   B. m ∈ { – 1;3 }

   C. m ∈ { – 1;0 }   D. m ∈ { 1;2 }

Phương trình có nghiệm x = 1, khi đó ta có:

Bài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Vậy giá trị m cần tìm là m ∈ { – 1;3 }

Chọn đáp án B.

II. Bài tập tự luận

1. Mức độ thông hiểu – nhận biết

Bài 1: Khẳng định sau đây đúng hay sai? Vì sao?

a) – 6 > 5 – 10

b) – 4 + 2 ≥ 5 – 7

c) 11 + ( – 6 ) ≤ 10 + ( – 6 )

Hướng dẫn:

a) Ta có: VP = 5 – 10 = – 5

Mà – 5 > – 6 ⇒ VP > VT.

Vậy khẳng định trên là sai.

b) Ta có:Bài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Khẳng định trên đúng.

c) Ta có:Bài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án ⇒ VT = 11 + ( – 6 ) > VP = 10 + ( – 6 )

Khẳng định trên là sai.

Bài 2: So sánh a và b biết:

a) a – 15 > b – 15

b) a + 2 ≤ b + 2

Hướng dẫn:

a) Ta có: a – 15 > b – 15 ⇔ a – 15 + 15 > b – 15 + 15 ⇔ a > b

Vậy a > b

b) Ta có: a + 2 ≤ b + 2 ⇒ a + 2 + ( – 2 ) ≤ b + 2 + ( – 2 ) ⇔ a ≤ b

Vậy a ≤ b

Bài 3: Khẳng định sau đúng hay sai?

a) ( – 3 ).4 > ( – 3 ).3

b) ( – 4 )( – 5 ) ≤ ( – 6 )( – 5 )

Hướng dẫn:

a) Ta có: 4 > 3 ⇒ ( – 3 ).4 < ( – 3 ).3

Khẳng định trên là sai.

b) Ta có: – 4 ≥ – 6 ⇒ ( – 4 )( – 5 ) ≤ ( – 6 )( – 5 )

Khẳng định trên là đúng

Bài 4: Cho 3a ≤ 2b ( b ≥ 0 ). Hãy so sánh 2 số 5a và 4b

Hướng dẫn:

Ta có: 3a ≤ 2b ⇒ 5/3.3a ≤ 5/3.2b ⇒ 5a ≤ 10/3b

Mà 10/3 < 4 ⇒ 10/3b ≤ 4b ⇒ 5a ≤ 4b

Bài 5: Tìm tập nghiệm của các bất phương trình sau:

a) ( x + √ 3 )2 ≥ ( x – √ 3 )2 + 2

b) x + √ x < ( 2√ x + 3 )( √ x – 1 )

c) ( x – 3 )√(x – 2) ≥ 0

Hướng dẫn:

a) Ta có: ( x + √ 3 )2 ≥ ( x – √ 3 )2 + 2

⇔ x2 + 2√ 3 x + 3 ≥ x2 – 2√ 3 x + 3 + 2

⇔ 4√3x ≥ 2 ⇔ x ≥ (√3)/6

Vậy bất phương trình đã cho có tập nghiệm là x ≥ (√3)/6

b) Ta có: x + √ x < ( 2√ x + 3 )( √ x – 1 )

Điều kiện: x ≥ 0

⇔ x + √ x < 2x – 2√ x + 3√ x – 3

⇔ – x < – 3 ⇔ x > 3

Kết hợp điều kiện, tập nghiệm bất phương trình là: x > 3

c) Ta có: ( x – 3 )√ (x – 2) ≥ 2

Điều kiện: x ≥ 2

Bất phương trình tương đương làBài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Vậy tập nghiệm của bất phương trình là S = 2 ∪ [ 3; + ∞ )

Bài 6: Có bao nhiêu giá trị thực của tham số m để bất phương trình ( m2 – m )x < m vô nghiệm là?

Hướng dẫn:

Rõ ràng nếuBài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

thì bất phương trình luôn có nghiệm.

Với m = 0, bất phương trình trở thành 0x < 0: vô nghiệm.

Với m = 1, bất phương trình trở thành 0x < 1: luôn đúng với mọi x ∈ R

Vậy với m = 0 thì bất phương trình trên vô nghiệm.

Bài 7: Bỏ dấu giá trị tuyệt đối và rút gọn các biểu thức sau:

a) A = 3x + 2 + | 5x | với x > 0

b) A = | 4x | – 2x + 12 với x < 0.

c) A = | x – 4 | – x + 1 với x < 4

Hướng dẫn:

a) Với x > 0 ⇒ | 5x | = 5x

Khi đó ta có: A = 3x + 2 + | 5x | = 3x + 2 + 5x = 8x + 2

Vậy A = 8x + 2.

b) Ta có: x < 0 ⇒ | 4x | = – 4x

Khi đó ta có: A = | 4x | – 2x + 12 = – 4x – 2x + 12 = 12 – 6x

Vậy A = 12 – 6x.

c) Ta có: x < 4 ⇒ | x – 4 | = 4 – x

Khi đó ta có: A = | x – 4 | – x + 1 = 4 – x – x + 1 = 5 – 2x.

Vậy A = 5 – 2x

Bài 8: Giải các phương trình sau:

a) | 2x | = x – 6

b) | – 5x | – 16 = 3x

c) | 4x | = 2x + 12

d) | x + 3 | = 3x + 1

Hướng dẫn:

a) Ta có: | 2x | = x – 6

+ Với x ≥ 0, phương trình tương đương: 2x = x – 6 ⇔ x = – 6.

Không thỏa mãn điều kiện x ≥ 0.

+ Với x < 0, phương trình tương đương: – 2x = x – 6 ⇔ – 3x = – 6 ⇔ x = 2.

Không thỏa mãn điều kiện x < 0.

Vậy phương trình đã cho vô nghiệm.

b) Ta có: | – 5x | – 16 = 3x

+ Với x ≥ 0, phương trình tương đương: 5x – 16 = 3x ⇔ 2x = 16 ⇔ x = 8

Thỏa mãn điều kiện x ≥ 0

+ Với x < 0, phương trình tương đương: – 5x – 16 = 3x ⇔ 8x = – 16 ⇔ x = – 2

Thỏa mãn điều kiện x < 0

Vậy phương trình đã cho có tập nghiệm là S = { – 2;8 }

c) Ta có: | 4x | = 2x + 12

+ Với x ≥ 0, phương trình tương đương: 4x = 2x + 12 ⇔ 2x = 12 ⇔ x = 6

Thỏa mãn điều kiện x ≥ 0

+ Với x < 0, phương trình tương đương: – 4x = 2x + 12 ⇔ – 6x = 12 ⇔ x = – 2

Thỏa mãn điều kiện x < 0

Vậy phương trình đã cho có tập nghiệm là S = { – 2;6 }

d) Ta có: | x + 3 | = 3x + 1

+ Với x ≥ – 3, phương trình tương đương: x + 3 = 3x + 1 ⇔ – 2x = – 2 ⇔ x = 1.

Thỏa mãn điều kiện x ≥ – 3

+ Với x < – 3, phương trình tương đương: – x – 3 = 3x + 1 ⇔ – 4x = 4 ⇔ x = – 1

Không thỏa mãn điều kiện x < – 3

Vậy phương trình đã cho có tập nghiệm là S = { 1 }

2. Vận dụng – Vận dung cao

Bài 1: Giải bất phương trình với a là hằng sốBài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Hướng dẫn:

Điều kiện xác định: a ≠ 0.

Ta có:Bài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

⇔ x( a + 2 ) > 1/a    ( 1 )

+ Nếu a > – 2,a ≠ 0 thì nghiệm của bất phương trình làBài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

+ Nếu a < – 2 thì nghiệm của bất phương trình làBài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

+ Nếu x = – 2 thì ( 1 ) có dạng 0x > – 1/2 luôn đúng với ∀ x ∈ R

Bài 2: Tìm tất cả các giá trị của tham số m để bất phương trình mx + 4 > 0 nghiệm đúng với mọi | x | < 8 ?

Hướng dẫn:

Yêu cầu của bài toán tương đương f( x ) = mx + 4 > 0, ∀ x ∈ ( – 8;8 )

⇔ Đồ thị hàm số y = f( x ) trên khoảng ( – 8;8 ) nằm phía trên trục hoành

⇔ Hai đầu mút của đoạn thẳng đó đều nằm trên phía trục hoành

Bài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Vậy giá trị m cần tìm là m ∈ [ – 1/2;1/2 ]

Bài 3: Tìm giá trị nhỏ nhất của biểu thức N = x( x + 1 )( x + 2 )( x + 3 )

Hướng dẫn:

Ta có: N = ( x2 + 3x )( x2 + 3x + 2 )

Đặt y = x2 + 3x2, ta đưa biểu thức về dạng:

N = y( y + 2 ) = y2 + 2y + 1 – 1 = ( y + 1 )2 – 1 ≥ – 1

Dấu bằng xảy ra khi và chỉ khi y + 1 = 0 ⇔ y = – 1 tức x2 + 3x = – 1

Ta có: x2 + 3x = – 1 ⇔ x2 + 3x + 1 = 0

Bài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Vậy giá trị nhỏ nhất làBài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Bài 4: Giải phương trình | x – 5 | + | x + 3 | = 3x – 1

Hướng dẫn:

+ Với x < – 3, phương trình đã cho có dạng:

( 5 – x ) – ( x + 3 ) = 3x – 1 ⇔ x = 3/5 (loại vì không thỏa mãn điều kiện)

+ Với – 3 ≤ x < 5, phương trình đã cho có dạng:

( 5 – x ) + ( x + 3 ) = 3x – 1 ⇔ 3x = 9 ⇔ x = 3 (thỏa mãn khoảng đang xét)

+ Với x ≥ 5, phương trình đã cho có dạng:

( x – 5 ) + ( x + 3 ) = 3x – 1 ⇔ x = – 1 (không thỏa mãn không xét)

Vậy phương trình đã cho có nghiệm là x = 3

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Sách bài tập Toán 7 Cánh diều | SBT Toán 7 Cánh diều | Giải SBT Toán 7 | Giải sách bài tập Toán 7 Tập 1, Tập 2 | Giải SBT Toán lớp 7 Cánh diều

Next post

Giải SGK Toán lớp 3 trang 21, 22, 23 Bài 7: Ôn tập hình học và đo lường | Kết nối tri thức

Bài liên quan:

Bài giảng điện tử Đơn thức | Kết nối tri thức Giáo án PPT Toán 8

Bài giảng điện tử Toán 8 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 8

20 câu Trắc nghiệm Đơn thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8

Trọn bộ Trắc nghiệm Toán 8 Kết nối tri thức có đáp án

Giải sgk tất cả các môn lớp 8 Kết nối tri thức | Giải sgk các môn lớp 8 chương trình mới

20 Bài tập Đơn thức nhiều biến. Đa thức nhiều biến (sách mới) có đáp án – Toán 8

Giải VTH Toán 8 Kết nối tri thức | Vở thực hành Toán 8 Kết nối tri thức (hay, chi tiết)

Giải SBT Toán 8 Kết nối tri thức | Sách bài tập Toán 8 Kết nối tri thức (hay, chi tiết)

Leave a Comment Hủy

Mục lục

  1. Bài giảng điện tử Đơn thức | Kết nối tri thức Giáo án PPT Toán 8
  2. Bài giảng điện tử Toán 8 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 8
  3. 20 câu Trắc nghiệm Đơn thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  4. Trọn bộ Trắc nghiệm Toán 8 Kết nối tri thức có đáp án
  5. Giải sgk tất cả các môn lớp 8 Kết nối tri thức | Giải sgk các môn lớp 8 chương trình mới
  6. 20 Bài tập Đơn thức nhiều biến. Đa thức nhiều biến (sách mới) có đáp án – Toán 8
  7. Giải VTH Toán 8 Kết nối tri thức | Vở thực hành Toán 8 Kết nối tri thức (hay, chi tiết)
  8. Giải SBT Toán 8 Kết nối tri thức | Sách bài tập Toán 8 Kết nối tri thức (hay, chi tiết)
  9. Giải sgk Toán 8 (cả 3 bộ sách) | Giải bài tập Toán 8 (hay, chi tiết)
  10. Lý thuyết Đơn thức (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  11. Tổng hợp Lý thuyết Toán lớp 8 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 8 Kết nối tri thức hay, chi tiết
  12. Giáo án Toán 8 Bài 1 (Kết nối tri thức 2023): Đơn thức
  13. Giáo án Toán 8 Kết nối tri thức năm 2023 (mới nhất)
  14. Giải SGK Toán 8 Bài 1 (Kết nối tri thức): Đơn thức
  15. Giải sgk Toán 8 Kết nối tri thức | Giải bài tập Toán 8 Kết nối tri thức Tập 1, Tập 2 (hay, chi tiết)
  16. Bài giảng điện tử Đa thức | Kết nối tri thức Giáo án PPT Toán 8
  17. 20 câu Trắc nghiệm Đa thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  18. Lý thuyết Đa thức (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  19. Giáo án Toán 8 Bài 2 (Kết nối tri thức 2023): Đa thức
  20. Giải SGK Toán 8 Bài 2 (Kết nối tri thức): Đa thức
  21. Bài giảng điện tử Phép cộng và phép trừ đa thức | Kết nối tri thức Giáo án PPT Toán 8
  22. 20 câu Trắc nghiệm Phép cộng và phép trừ đa thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  23. 20 Bài tập Các phép tính với đa thức nhiều biến (sách mới) có đáp án – Toán 8
  24. Lý thuyết Phép cộng và phép trừ đa thức (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  25. Giáo án Toán 8 Bài 3 (Kết nối tri thức 2023): Phép cộng và phép trừ đa thức
  26. Giải SGK Toán 8 Bài 3 (Kết nối tri thức): Phép cộng và phép trừ đa thức
  27. Bài giảng điện tử Luyện tập chung trang 17 | Kết nối tri thức Giáo án PPT Toán 8
  28. Giải SGK Toán 8 (Kết nối tri thức) Luyện tập chung trang 17
  29. Bài giảng điện tử Phép nhân đa thức | Kết nối tri thức Giáo án PPT Toán 8
  30. 20 câu Trắc nghiệm Phép nhân đa thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  31. Lý thuyết Phép nhân đa thức (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  32. Giáo án Toán 8 Bài 4 (Kết nối tri thức 2023): Phép nhân đa thức
  33. Giải SGK Toán 8 Bài 4 (Kết nối tri thức): Phép nhân đa thức
  34. Bài giảng điện tử Phép chia đa thức cho đơn thức | Kết nối tri thức Giáo án PPT Toán 8
  35. 20 câu Trắc nghiệm Phép chia đa thức cho đơn thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  36. Lý thuyết Phép chia đa thức cho đơn thức (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  37. Giáo án Toán 8 Bài 5 (Kết nối tri thức 2023): Phép chia đa thức cho đơn thức
  38. Giải SGK Toán 8 Bài 5 (Kết nối tri thức): Phép chia đa thức
  39. Bài giảng điện tử Luyện tập chung trang 25 | Kết nối tri thức Giáo án PPT Toán 8
  40. Giáo án Toán 8 (Kết nối tri thức 2023) Luyện tập chung trang 25
  41. Giải SGK Toán 8 (Kết nối tri thức): Luyện tập chung trang 25
  42. Bài giảng điện tử Bài tập cuối chương 1 trang 27 | Kết nối tri thức Giáo án PPT Toán 8
  43. Sách bài tập Toán 8 (Kết nối tri thức) Bài tập cuối chương 1
  44. Lý thuyết Toán 8 Chương 1 (Kết nối tri thức 2023): Đa thức hay, chi tiết
  45. Giáo án Toán 8 (Kết nối tri thức 2023) Bài tập cuối chương 1
  46. Giải SGK Toán 8 (Kết nối tri thức): Bài tập cuối chương 1 trang 27
  47. Bài giảng điện tử Hiệu hai bình phương. Bình phương của một tổng hay một hiệu | Kết nối tri thức Giáo án PPT Toán 8
  48. 20 câu Trắc nghiệm Hiệu hai bình phương. Bình phương của một tổng hay một hiệu (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  49. Lý thuyết Hiệu hai bình phương. Bình phương của một tổng hay một hiệu (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  50. Giáo án Toán 8 Bài 6 (Kết nối tri thức 2023): Hiệu hai bình phương. Bình phương của một tổng hay một hiệu
  51. Giải SGK Toán 8 Bài 6 (Kết nối tri thức): Hiệu hai bình phương. Bình phương của một tổng hay một hiệu
  52. Bài giảng điện tử Lập phương của một tổng. Lập phương của một hiệu | Kết nối tri thức Giáo án PPT Toán 8

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán