Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Trắc nghiệm Toán 10

Mỗi học sinh lớp 10A đóng góp 2 quyển sách cho thư viện trường. Lớp trưởng thống kê lại số sách mà mỗi tổ trong lớp đóng góp ở bảng sau: Hãy cho biết lớp trưởng đã thống kê chính xác chưa. Tại sao?

By admin 12/05/2023 0

Câu hỏi:

Mỗi học sinh lớp 10A đóng góp 2 quyển sách cho thư viện trường. Lớp trưởng thống kê lại số sách mà mỗi tổ trong lớp đóng góp ở bảng sau:
Media VietJack

Hãy cho biết lớp trưởng đã thống kê chính xác chưa. Tại sao?

Trả lời:

Vì mỗi bạn học sinh lớp 10A đều đóng góp 2 quyển sách, nên mỗi bạn trong các tổ đều đóng góp 2 quyển sách. Do đó tổng số sách các học sinh đóng góp được trong một tổ phải là số chia hết cho 2.
Quan sát bảng thống kê đã cho ta thấy có tổng số sách của tổ 4 là 19 quyển, số này không chia hết cho 2, do đó lớp trưởng đã thống kê chưa chính xác.

====== **** mời các bạn xem câu tiếp bên dưới **** =====

  1. Một hằng số quan trọng trong toán học là số e có giá trị gần đúng với 12 chữ số thập phân là 2,718281828459. a) Giả sử ta lấy giá trị 2,7 làm giá trị gần đúng của e. Hãy chứng tỏ sai số tuyệt đối không vượt quá 0,02 và sai số tương đối không vượt quá 0,75%. b) Hãy quy tròn e đến hàng phần nghìn. c) Tìm số gần đúng của số e với độ chính xác 0,00002.

    Câu hỏi:

    Một hằng số quan trọng trong toán học là số e có giá trị gần đúng với 12 chữ số thập phân là 2,718281828459.
    a) Giả sử ta lấy giá trị 2,7 làm giá trị gần đúng của e. Hãy chứng tỏ sai số tuyệt đối không vượt quá 0,02 và sai số tương đối không vượt quá 0,75%.
    b) Hãy quy tròn e đến hàng phần nghìn.
    c) Tìm số gần đúng của số e với độ chính xác 0,00002.

    Trả lời:

    a) Sai số tuyệt đối ∆ = |2,718281828459 – 2,7| = 0,018281828459 < 0,02.
    Sai số tương đối δ=Δ|2,7|=0,0182818284592,7≈0,68% < 0,75%.
    b) Quy tròn e đến hàng phần nghìn ta được số gần đúng là 2,718.
    c) Hàng của chữ số khác 0 đầu tiên bên trái của độ chính xác d = 0,00002 là hàng phần trăm nghìn. Quy tròn e đến hàng phần trăm nghìn ta được số gần đúng của e là 2,71828.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  2. Cho các số gần đúng a = 54919020 ± 1000 và b = 5,7914003 ± 0,002. Hãy xác định số quy tròn của a và b.

    Câu hỏi:

    Cho các số gần đúng a = 54919020 ± 1000 và b = 5,7914003 ± 0,002. Hãy xác định số quy tròn của a và b.

    Trả lời:

    + Ta có: a = 54919020 ± 1000
    Hàng lớn nhất của độ chính xác d = 1000 là hàng nghìn, nên ta quy tròn đến hàng phần chục nghìn. Vậy số quy tròn của a là 54920000.
    + Ta có: b = 5,7914003 ± 0,002
    Hàng lớn nhất của độ chính xác d = 0,002 là hàng phần nghìn, nên ta quy tròn đến hàng phần trăm. Vậy số quy tròn của b là 5,79.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  3. Sản lượng nuôi tôm phân theo địa phương của các tỉnh Cà Mau và Tiền Giang được thể hiện ở hai biểu đồ sau (đơn vị: tấn): a) Hãy cho biết các phát biểu sau là đúng hay sai: i. Sản lượng nuôi tôm mỗi năm của tỉnh Tiền Giang đều cao hơn tỉnh Cà Mau. ii. Ở tỉnh Cà Mau, sản lượng nuôi tôm năm 2018 tăng gấp hơn 4 lần so với năm 2008. iii. Ở tỉnh Tiền Giang, sản lượng nuôi tôm năm 2018 tăng gấp hơn 2,5 lần so với năm 2008. iv. Ở tỉnh Tiền Giang, từ năm 2008 đến năm 2018, sản lượng nuôi tôm mỗi năm tăng trên 50% so với năm cũ. v. Trong vòng 5 năm từ năm 2013 đến 2018, sản lượng nuôi tôm của tỉnh Cà Mau tăng cao hơn của tỉnh Tiền Giang. b) Để so sánh sản lượng nuôi tôm của hai tỉnh Cà Mau và Tiền Giang, ta nên sử dụng loại biểu đồ nào?

    Câu hỏi:

    Sản lượng nuôi tôm phân theo địa phương của các tỉnh Cà Mau và Tiền Giang được thể hiện ở hai biểu đồ sau (đơn vị: tấn):
    Media VietJack

    a) Hãy cho biết các phát biểu sau là đúng hay sai:
    i. Sản lượng nuôi tôm mỗi năm của tỉnh Tiền Giang đều cao hơn tỉnh Cà Mau.
    ii. Ở tỉnh Cà Mau, sản lượng nuôi tôm năm 2018 tăng gấp hơn 4 lần so với năm 2008.
    iii. Ở tỉnh Tiền Giang, sản lượng nuôi tôm năm 2018 tăng gấp hơn 2,5 lần so với năm 2008.
    iv. Ở tỉnh Tiền Giang, từ năm 2008 đến năm 2018, sản lượng nuôi tôm mỗi năm tăng trên 50% so với năm cũ.
    v. Trong vòng 5 năm từ năm 2013 đến 2018, sản lượng nuôi tôm của tỉnh Cà Mau tăng cao hơn của tỉnh Tiền Giang.
    b) Để so sánh sản lượng nuôi tôm của hai tỉnh Cà Mau và Tiền Giang, ta nên sử dụng loại biểu đồ nào?

    Trả lời:

    a)
    i. Quan sát biểu đồ ta thấy:
    Sản lượng nuôi tôm mỗi năm ở Tiền Giang đều thấp hơn 30 000 tấn, sản lượng nuôi tôm mỗi năm ở Cà Mau đều cao hơn 75 000 tấn.
    Do đó sản lượng nuôi tôm mỗi năm của tỉnh Cà Mau đều cao hơn rất nhiều so với tỉnh Tiền Giang.
    Vậy phát biểu i. là sai.
    ii. Ở tỉnh Cà Mau:
    – Sản lượng nuôi tôm năm 2018 là 175 000 tấn.
    – Sản lượng nuôi tôm năm 2008 khoảng hơn 90 000 tấn.
    Vì 17500090000≈2.
    Do đó sản lượng nuôi tôm năm 2018 ở tỉnh Cà Mau tăng khoảng gần 2 lần so với năm 2008.
    Vậy phát biểu ii. là sai.
    iii. Ở tỉnh Tiền Giang:
    – Sản lượng nuôi tôm năm 2018 khoảng 29 000 tấn.
    – Sản lượng nuôi tôm năm 2008 là 10 000 tấn.
    Vì 2900010000=2,9.
    Do đó sản lượng nuôi tôm năm 2018 ở tỉnh Tiền Giang tăng gấp khoảng 2,9 (> 2,5) lần so với năm 2008.
    Vậy phát biểu iii. là đúng.
    iv. Ở tỉnh Tiền Giang:
    – Sản lượng nuôi tôm năm 2008 là 10 000 tấn.
    – Sản lượng nuôi tôm năm 2013 khoảng hơn 17 000 tấn, tăng khoảng 7 000 tấn so với năm 2008.
    Ta có: 700010000.100%=70% > 50%
    – Sản lượng nuôi tôm năm 2018 khoảng 29 000 tấn, tăng khoảng 12 000 tấn so với năm 2013.
    Ta có: 1200017000.100%≈71% > 50%.
    Vậy phát biểu iv. là đúng.
    v.
    + Sản lượng nuôi tôm ở tỉnh Cà Mau năm 2013 khoảng gần 140 000 tấn, năm 2018 là 175 000 tấn. Ta có: 175000140000=1,25.
    + Sản lượng nuôi tôm ở tỉnh Tiền Giang năm 2013 khoảng hơn 17 000 tấn, năm 2018 khoảng hơn 29 000 tấn. Ta có: 2900017000≈1,7.
    Vì 1,7 > 1,25, do đó trong vòng 5 năm từ năm 2013 đến năm 2018, sản lượng nuôi tôm của tỉnh Tiền Giang tăng cao hơn của tỉnh Cà Mau.
    Vậy phát biểu v. là sai.
    b) Để so sánh sản lượng nuôi tôm của hai tỉnh Cà Mau và Tiền Giang, ta nên sử dụng loại biểu đồ cột ghép.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  4. Bạn Châu cân lần lượt 50 quả vải thiều Thanh Hà được lựa chọn ngẫu nhiên từ vườn nhà mình và được kết quả như sau: a) Hãy tìm số trung bình, trung vị, mốt của mẫu số liệu trên. b) Hãy tìm độ lệch chuẩn, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lệ của mẫu số liệu trên.

    Câu hỏi:

    Bạn Châu cân lần lượt 50 quả vải thiều Thanh Hà được lựa chọn ngẫu nhiên từ vườn nhà mình và được kết quả như sau:
    Media VietJack

    a) Hãy tìm số trung bình, trung vị, mốt của mẫu số liệu trên.
    b) Hãy tìm độ lệch chuẩn, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lệ của mẫu số liệu trên.

    Trả lời:

    a) Cỡ mẫu là: n = 50.
    Số trung bình: x¯=1.8+10.19+19.20+17.21+3.2250=20,02
    Giá trị 20 có tần số lớn nhất nên mốt của mẫu số liệu là 20.
    Sắp xếp các số liệu theo thứ tự không giảm, ta được:
    8; 19; 19; 19; 19; 19; 19; 19; 19; 19; 19; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 21; 21; 21; 21; 21; 21; 21; 21; 21; 21; 21; 21; 21; 21; 21; 21; 21; 22; 22; 22.
    Vì cỡ mẫu là số chẵn nên trung vị mẫu là 12(20+20)=20.
    b) Phương sai mẫu là:
    S2 = 150(1 . 82 + 10 . 192 + 19 . 202 + 17 . 212 + 3 . 222) – 20,022 = 3,6596.
    Độ lệch chuẩn mẫu số liệu là: S = S2=3,6596≈1,9.
    Khoảng biến thiên của mẫu là: R = 22 – 8 = 14.
    Tứ phân vị thứ hai là trung vị của mẫu số liệu đã cho nên Q2 = 20.
    Tứ phân vị thứ nhất là trung vị của mẫu: 8; 19; 19; 19; 19; 19; 19; 19; 19; 19; 19; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20. Do đó Q1 = 20.
    Tứ phân vị thứ ba là trung vị của mẫu: 20; 20; 20; 20; 20; 21; 21; 21; 21; 21; 21; 21; 21; 21; 21; 21; 21; 21; 21; 21; 21; 21; 22; 22; 22. Do đó Q3 = 21.
    Khoảng tứ phân vị là ∆Q = 21 – 20 = 1.
    Ta có: Q3 + 1,5∆Q = 21 + 1,5 . 1 = 22,5 và Q1 – 1,5∆Q = 20 – 1,5 . 1 = 18,5.
    Do đó giá trị ngoại lệ của mẫu số liệu đã cho là 8.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  5. Độ tuổi của 22 cầu thủ ở đội hình xuất phát của hai đội bóng đá được ghi lại ở bảng sau: a) Hãy tìm số trung bình, mốt, độ lệch chuẩn và tứ phân vị của tuổi mỗi cầu thủ của từng đội bóng. b) Tuổi của các cầu thủ ở đội bóng nào đồng đều hơn? Tại sao?

    Câu hỏi:

    Độ tuổi của 22 cầu thủ ở đội hình xuất phát của hai đội bóng đá được ghi lại ở bảng sau:
    Media VietJack

    a) Hãy tìm số trung bình, mốt, độ lệch chuẩn và tứ phân vị của tuổi mỗi cầu thủ của từng đội bóng.
    b) Tuổi của các cầu thủ ở đội bóng nào đồng đều hơn? Tại sao?

    Trả lời:

    a)
    * Đội A:
    + Số trung bình của tuổi: xA¯=28+24+26+25+25+23+20+29+21+24+2411≈24,45
    + Giá trị 24 có tần số lớn nhất (3) nên mốt của mẫu số liệu ở đội A là 24.
    + Phương sai mẫu:
    SA2=111(282 + 242 + 262 + 252 + 252 + 232 + 202 + 292 + 212 + 242 + 242) – (24,45)2
    ≈ 6,65.
    + Độ lệch chuẩn mẫu số liệu: SA = SA2=6,65≈2,58.
    + Sắp xếp các số liệu theo thứ tự không giảm, ta được:
    20; 21; 23; 24; 24; 24; 25; 25; 26; 28; 29.
    Vì cỡ mẫu là 11 là số lẻ nên tứ phân vị thứ hai là Q2A = 24.
    Tứ phân vị thứ nhất là trung vị của mẫu: 20; 21; 23; 24; 24. Do đó Q1A = 23.
    Tứ phân vị thứ ba là trung vị của mẫu: 25; 25; 26; 28; 29. Do đó Q3A = 26.
    * Đội B:
    + Số trung bình của tuổi: xB¯=32+20+19+21+28+29+21+22+29+19+2911≈24,45
    + Giá trị 29 có tần số lớn nhất (3) nên mốt của mẫu số liệu ở đội B là 29.
    + Phương sai mẫu:
    SB2=111(322 + 202 + 192 + 212 + 282 + 292 + 212 + 222 + 292 + 192 + 292) – (24,45)2
    ≈ 22,11.
    + Độ lệch chuẩn mẫu số liệu: SB = SB2=22,11≈4,7.
    + Sắp xếp các số liệu theo thứ tự không giảm, ta được:
    19; 19; 20; 21; 21; 22; 28; 29; 29; 29; 32.
    Vì cỡ mẫu là 11 là số lẻ nên tứ phân vị thứ hai là Q2B = 22.
    Tứ phân vị thứ nhất là trung vị của mẫu: 19; 19; 20; 21; 21. Do đó Q1B = 20.
    Tứ phân vị thứ ba là trung vị của mẫu: 28; 29; 29; 29; 32. Do đó Q3B = 29.
    b) Ta thấy độ lệch chuẩn và phương sai mẫu số liệu ở đội B cao hơn đội A. Điều đó có nghĩa là tuổi của các cầu thủ ở đội B có độ phân tán cao hơn đội A.
    Vậy tuổi của các cầu thủ ở đội A đồng đều hơn đội B.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

Tags : Tags Bài tập cuối chương VI có đáp án 1
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Điền đơn vị độ dài thích hợp vào chỗ trống (viết bằng kí hiệu).Chiều cao của bạn Bình bằng 12 

Next post

Tính ∆' và tìm số nghiệm của phương trình 7×2 − 12x + 4 = 0

Bài liên quan:

Tìm giá trị nhỏ nhất của biểu thức F(x; y) = – 2x + y trên miền nghiệm của hệ bất phương trình x – y ≥2x+y ≤4x-5y ≤2.

Cho tam giác ABC đều có cạnh bằng a, gọi H là trung điểm của cạnh BC. Độ dài của vectơ 2(→HA-→HC)bằng

Cho tam giác đều ABC nội tiếp đường tròn tâm O bán kính bằng 1. Gọi M là điểm nằm trên đường tròn (O), độ dài vectơ →MA+→MB+→MC bằng

Cho hình thang MNPQ, MN // PQ, MN = 2PQ. Phát biểu nào dưới đây là đúng?

Phát biểu nào sau đây là sai?

Cho hình chữ nhật ABCD tâm O. Gọi M, N lần lượt là trung điểm của các cạnh AB, AD. Chọn khẳng định đúng trong các khẳng định sau:

Cho hình bình hành ABCD. Mệnh đề nào sau đây đúng?

Cho tam giác đều ABC có AB=a, M là trung điểm của BC. Khi đó →MA+→AC bằng

Leave a Comment Hủy

Mục lục

  1. Tìm giá trị nhỏ nhất của biểu thức F(x; y) = – 2x + y trên miền nghiệm của hệ bất phương trình x – y ≥2x+y ≤4x-5y ≤2.
  2. Cho tam giác ABC đều có cạnh bằng a, gọi H là trung điểm của cạnh BC. Độ dài của vectơ 2(→HA-→HC)bằng
  3. Cho tam giác đều ABC nội tiếp đường tròn tâm O bán kính bằng 1. Gọi M là điểm nằm trên đường tròn (O), độ dài vectơ →MA+→MB+→MC bằng
  4. Cho hình thang MNPQ, MN // PQ, MN = 2PQ. Phát biểu nào dưới đây là đúng?
  5. Phát biểu nào sau đây là sai?
  6. Cho hình chữ nhật ABCD tâm O. Gọi M, N lần lượt là trung điểm của các cạnh AB, AD. Chọn khẳng định đúng trong các khẳng định sau:
  7. Cho hình bình hành ABCD. Mệnh đề nào sau đây đúng?
  8. Cho tam giác đều ABC có AB=a, M là trung điểm của BC. Khi đó →MA+→AC bằng
  9. Cho hình bình hành ABCD với điểm K thỏa mãn →KA+→KC=→AB thì
  10. Cho hình chữ nhật ABCD. Hãy chọn khẳng định đúng.
  11. Đẳng thức nào sau đây, mô tả đúng hình vẽ bên?
  12. Một người đứng ở vị trí A trên nóc một ngôi nhà cao 8m đang quan sát một cây cao cách ngôi nhà 25m và đo được BAC =43°44′. Chiều cao của cây gần với kết quả nào nhất sau đây?
  13. Cho tam giác ABC có BC = 50 cm, B = 65o C = 45o Tính chu vi của tam giác ABC (làm tròn kết quả đến hàng phần mười theo đơn vị xăng – ti – mét):
  14. Cho tam giác ABC, có các cạnh AB = c, AC = b, BC = a. Định lí sin được phát biểu:
  15. Trong các công thức dưới đây, công thức nào sai về cách tính diện tích tam giác ABC? Biết AB = c, AC = b, BC = a, ha, hb, hc lần lượt là các đường cao kẻ từ đỉnh A, B, C, r là bán kính đường tròn nội tiếp, R là bán kính đường tròn ngoại tiếp tam giác ABC.
  16. Cho điểm M(x0; y0) nằm trên đường tròn đơn vị thỏa mãn xOM = α. Khi đó phát biểu nào dưới đây là sai?
  17. Cho tam giác ABC, ta có các đẳng thức: (I) sinA2 = sinB+C2; (II) tanA2 = cotB+C2; (III) sinA = sin(B + C). Có bao nhiêu đẳng thức đúng?
  18. Tính giá trị biểu thức: A = cos 0° + cos 40° + cos 120° + cos 140°
  19. Cho sin35° ≈ 0,57. Giá trị của sin145° gần với giá trị nào nhất sau đây:
  20. Phần mặt phẳng không bị gạch chéo trong hình vẽ bên (kể cả biên) là biểu diễn hình học tập nghiệm của hệ bất phương trình nào dưới đây?
  21. Bất phương trình nào sau đây không là bất phương trình bậc nhất một ẩn?
  22. Cặp số (x; y) nào sau đây là nghiệm của bất phương trình 5x – 3y ≤ 2?
  23. Lớp 10A1 có 6 học sinh giỏi Toán, 4 học sinh giỏi Lý, 5 học sinh giỏi Hóa, 2 học sinh giỏi Toán và Lý, 3 học sinh giỏi Toán và Hóa, 2 học sinh giỏi Lý và Hóa, 1 học sinh giỏi cả 3 môn Toán, Lý, Hóa. Số học sinh giỏi ít nhất một môn (Toán, Lý, Hóa) của lớp 10A1 là:
  24. Hình vẽ sau đây (phần không bị gạch) là biểu diễn của tập hợp nào?
  25. Cho hai tập hợp (1; 3) và [2; 4]. Giao của hai tập hợp đã cho là
  26. Số phần tử của tập hợp A = {k2 + 1| k ∈ ℤ, |k| ≤ 2} bằng
  27. Cho A = {0; 1; 2; 3; 4} và B = {2; 3; 4; 5; 6}. Tập hợp (A \ B) ∪ (B \ A) bằng?
  28. Mệnh đề phủ định của mệnh đề “Phương trình ax2 + bx + c = 0 (a ≠ 0) vô nghiệm” là:
  29. Cho mệnh đề chứa biến P(n): “n2 chia hết cho 4 ” với n là số nguyên. Chọn mệnh đề đúng trong các mệnh đề sau:
  30. Cho tập hợp A và a là một phần tử của tập hợp A. Trong các mệnh đề sau, mệnh đề nào sai?
  31. Lớp 10A có 36 học sinh, trong đó mỗi học sinh đều biết chơi ít nhất một trong hai môn thể thao đá cầu hoặc cầu lông. Biết rằng lớp 10A có 25 học sinh biết chơi đá cầu, có 20 học sinh biết chơi cầu lông. Hỏi lớp 10A có bao nhiêu học sinh biết chơi cả hai môn đá cầu và cầu lông?
  32. Anh Trung có kế hoạch đầu tư 400 triệu đồng vào hai khoản X và Y. Để đạt được lợi nhuận thì khoản X phải đầu tư ít nhất 100 triệu đồng và số tiền đầu tư cho khoản Y không nhỏ hơn số tiền cho khoản X. Viết hệ bất phương trình bậc nhất hai ẩn để mô tả hai khoản đầu tư đó và biểu diễn miền nghiệm của hệ bất phương trình vừa tìm được.
  33. Để lắp đường dây điện cao thế từ vị trí A đến vị trí B, do phải tránh một ngọn núi nên người ta phải nối đường dây từ vị trí A đến vị trí C dài 20 km, sau đó nối đường dây từ vị trí C đến vị trí B dài 12km. Góc tạo bởi dây AC và CB là 75°. Tính chiều dài tăng thêm vì không thể nối trực tiếp từ A đến B.
  34. Giải tam giác ABC biết ABC có b = 14, c = 25 và A = 120°.
  35. Miền nghiệm của bất phương trình 2x – 3y > 5 là nửa mặt phẳng (không kể đường thẳng d: 2x – 3y = 5) không chứa điểm có tọa độ nào sau đây?
  36. Cho tam giác ABC có AB = 6,5 cm, AC = 8,5 cm, A=185o. Tính độ dài cạnh BC (làm tròn kết quả đến hàng phần mười theo đơn vị tương ứng).
  37. Giá trị biểu thức T = sin225° + sin275° + sin2115° + sin2165° là:
  38. Cho 0° < α < 180°. Chọn câu trả lời đúng.
  39. Cặp số nào sau đây không là nghiệm của hệ bất phương trình x + y ≤ 22x – 3y &gt; -2
  40. Cặp số nào sau đây là nghiệm của bất phương trình – 3x + 5y ≤ 6.
  41. Cho hình chữ nhật ABCD có AB = 3a, BC = 4a. Độ dài của vectơ →AB+→AD bằng
  42. Hàm số f(x) = x2 đồng biến trên khoảng nào dưới đây ?
  43. Cho hai tập hợp A = [– 2; 3), B = [1; 5]. Khi đó A ∩ B là tập hợp nào dưới đây ?
  44. Cho hai tập hợp A = {1; 2; 3; 4; 5} và B = {1; 3; 5; 7}. Số phần tử của tập hợp A\B là
  45. Cho I là trung điểm của đoạn thẳng AB và M là một điểm tùy ý. Mệnh đề nào dưới đây đúng?
  46. Vectơ có điểm đầu là A và điểm cuối là B được kí hiệu là:
  47. Cho các vectơ →u; →v;→x;→y như trong hình: Mệnh đề nào dưới đây là đúng?
  48. Trong mặt phẳng Oxy đồ thị của hàm số y = x2 – 2x + 3 có trục đối xứng là đường thẳng nào dưới đây ?
  49. Trong mặt phẳng Oxy, biết điểm M(2; y0) thuộc đồ thị của hàm số y = 2x – 3. Giá trị của y0 bằng:
  50. Trong các mệnh đề dưới đây, mệnh đề nào đúng ?
  51. Hàm số nào dưới đây có đồ thị là đường thẳng như trong hình bên ?
  52. Cho hàm số f(x) = x3 – 2. Giá trị f(1) bằng bao nhiêu?

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán