Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Trắc nghiệm Toán 10

Bảng sau đây cho biết kết quả vòng phỏng vấn tuyển dụng vào một công ty (dấu “+” là đạt, dấu “-” là không đạt): a) Xác định tập hợp A gồm các ứng viên đạt yêu cầu về chuyên môn, tập hợp B gồm các ứng viên đạt yêu cầu về mặt ngoại ngữ. b) Xác định tập hợp C gồm các ứng viên đạt yêu cầu cả về chuyên môn và ngoại ngữ. c) Xác định tập hợp D gồm các ứng viên đạt ít nhất một trong hai yêu cầu về chuyên môn và ngoại ngữ.

By admin 13/05/2023 0

Câu hỏi:

Bảng sau đây cho biết kết quả vòng phỏng vấn tuyển dụng vào một công ty (dấu “+” là đạt, dấu “-” là không đạt):
Media VietJack

a) Xác định tập hợp A gồm các ứng viên đạt yêu cầu về chuyên môn, tập hợp B gồm các ứng viên đạt yêu cầu về mặt ngoại ngữ.
b) Xác định tập hợp C gồm các ứng viên đạt yêu cầu cả về chuyên môn và ngoại ngữ.
c) Xác định tập hợp D gồm các ứng viên đạt ít nhất một trong hai yêu cầu về chuyên môn và ngoại ngữ.

Trả lời:

a) Các ứng viên đạt yêu cầu về chuyên môn là: a1, a2, a5, a6, a7, a8, a10.
Khi đó A = {a1; a2; a5; a6; a7; a8; a10}.
Các ứng viên đạt yêu cầu về ngoại ngữ là: a1, a3, a5, a6, a8, a10.
Khi đó B = {a1; a3; a5; a6; a8; a10}.
b) Các ứng viên đạt yêu cầu cả về chuyên môn và ngoại ngữ là: a1, a5, a6, a8, a10.
Vậy C = {a1; a5; a6; a8; a10}.
c) Các ứng viên đạt ít nhất một trong hai yêu cầu về chuyên môn và ngoại ngữ.
{a1; a2; a3; a5; a6; a7; a8; a10}.
Vậy D = {a1; a2; a3; a5; a6; a7; a8; a10}.

====== **** mời các bạn xem câu tiếp bên dưới **** =====

  1. Có hai đường tròn chia một hình chữa nhật thành các miền như hình bên. Hãy đặt mỗi thẻ số sau đây vào miền thích hợp trên hình chữ nhật và giải thích cách làm.

    Câu hỏi:

    Có hai đường tròn chia một hình chữa nhật thành các miền như hình bên. Hãy đặt mỗi thẻ số sau đây vào miền thích hợp trên hình chữ nhật và giải thích cách làm.
    Media VietJack
    Media VietJack

    Trả lời:

    Trong các số đã cho, ta có:
    Các số là bội của 3 là: 75; 78; 90; 120; 231.
    Các số là bội của 5 là: 65; 75; 90; 100; 120.
    Các số không là bội của 3 cũng không là bội của 5 là: 82 và 94.
    Khi đó ta điền được vào miền tương ứng như sau:
    Media VietJack

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  2. Xác định tập hợp A∪B và A∩B, biết: a) A = {a; b; c; d; e}, B = {a; e; i; u}; b) A = {x∈ℝ| x2 + 2x – 3 = 0}, B = {x ∈ℝ| |x| = 1}.

    Câu hỏi:

    Xác định tập hợp A∪B và A∩B, biết:
    a) A = {a; b; c; d; e}, B = {a; e; i; u};
    b) A = {x∈ℝ| x2 + 2x – 3 = 0}, B = {x ∈ℝ| |x| = 1}.

    Trả lời:

    a) Ta có A∪B = {a; b; c; d; e; i; u}.
    Ta lại có A∩B = {a; e}.
    Vậy A∪B = {a; b; c; d; e; i; u} và A∩B = {a; e}.
    b) Xét phương trình x2 + 2x – 3 = 0
    ⇔x=1x=−3
     
    Suy ra A = {-3; 1}
    Xét phương trình |x| = 1
    ⇔x=1x=−1
     
    Suy ra B = {-1; 1}.
    Vậy A∪B = {-3; -1; 1} và A∩B = {1}.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  3. Cho A = {(x; y)| x, y ∈ℝ, 3x – y = 9}, B = {(x; y)| x, y ∈ℝ, x – y = 1}. Hãy xác định A∩B.

    Câu hỏi:

    Cho A = {(x; y)| x, y ∈ℝ, 3x – y = 9}, B = {(x; y)| x, y ∈ℝ, x – y = 1}. Hãy xác định A∩B.

    Trả lời:

    Ta có: A∩B = {(x; y)| x, y ∈ℝ, x – y = 1 và 3x – y = 9}.
    Nghĩa là tập hợp A∩B gồm các cặp (x; y) với x, y ∈ℝ thỏa mãn hệ phương trình x−y=13x−y=9.
    Xét hệ phương trình x−y=13x−y=9⇔x=4y=3.
    Do đó A∩B = {(4; 3)}.
    Vậy A∩B = {(4; 3)}.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  4. Tại vòng chung kết của một trò chơi truyền hình, có 100 khán giải tại trường quay có quyền bình chọn cho hai thí sinh A và B. Biết rẳng có 85 khán giả bình chọn cho thí sinh A, 72 khán giả bình chọn cho thí sinh B và 60 khán giả bình chọn cho cả hai thí sinh này. Có bao nhiêu khán giá đã tham gia bình chọn? Có bao nhiêu khán giả không tham gia bình chọn?

    Câu hỏi:

    Tại vòng chung kết của một trò chơi truyền hình, có 100 khán giải tại trường quay có quyền bình chọn cho hai thí sinh A và B. Biết rẳng có 85 khán giả bình chọn cho thí sinh A, 72 khán giả bình chọn cho thí sinh B và 60 khán giả bình chọn cho cả hai thí sinh này. Có bao nhiêu khán giá đã tham gia bình chọn? Có bao nhiêu khán giả không tham gia bình chọn?

    Trả lời:

    Gọi E, F lần lượt là tập hợp số người bình chọn cho thí sinh A và số người bình chọn cho thí sinh B.
    Theo giả thiết, ta có: n(E) = 85, n(F) = 72, n(E∩F) = 60.
    Nhận thấy rằng, nếu tính tổng n(E) + n(F) thì ta được số người bình chọn cho A hoặc B, nhưng số người bình chọn cho cả A và B được tính hai lần. Do đó số người bình chọn cho ít nhất một trong hai thí sinh A và B.
    n(E∪F) = n(E) + n(F) – n(E∩F) = 85 + 72 – 60 = 97.
    Suy ra có 97 người tham gia bình chọn và có 100 – 97 = 3 người không tham gia bình chọn.
    Vậy có 97 người tham gia bình chọn và 3 người không tham gia bình chọn.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  5. Trở lại bảng thông tin về kết quả phỏng vấn tuyển dụng ở hoạt động khám phá 1. a) Xác định tập hợp E gồm những ứng viên đạt yêu cầu về chuyên môn nhưng không đạt yêu cầu về ngoại ngữ. b) Xác định tập hợp F gồm những ứng viên không đạt yêu cầu về chuyên môn.

    Câu hỏi:

    Trở lại bảng thông tin về kết quả phỏng vấn tuyển dụng ở hoạt động khám phá 1.
    a) Xác định tập hợp E gồm những ứng viên đạt yêu cầu về chuyên môn nhưng không đạt yêu cầu về ngoại ngữ.
    b) Xác định tập hợp F gồm những ứng viên không đạt yêu cầu về chuyên môn.

    Trả lời:

    a) Các ứng viên đạt yêu cầu về chuyên môn nhưng không đạt yêu cầu về ngoại ngữ là a2 và a7.
    Vậy E = {a2; a7}.
    b) Các ứng viên không đạt yêu cầu về chuyên môn là: a3; a4; a9.
    Vậy F = {a3; a4; a9}.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

Tags : Tags Bài tập Các phép toán trên tập hợp có đáp án
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Cho hình vẽ:Hình vẽ trên có … hình tứ giác 

Next post

Cặp số (x; y) = (1; 3) là nghiệm của hệ phương trình bậc nhất hai ẩn nào trong các hệ phương trình sau:

Bài liên quan:

Tìm giá trị nhỏ nhất của biểu thức F(x; y) = – 2x + y trên miền nghiệm của hệ bất phương trình x – y ≥2x+y ≤4x-5y ≤2.

Cho tam giác ABC đều có cạnh bằng a, gọi H là trung điểm của cạnh BC. Độ dài của vectơ 2(→HA-→HC)bằng

Cho tam giác đều ABC nội tiếp đường tròn tâm O bán kính bằng 1. Gọi M là điểm nằm trên đường tròn (O), độ dài vectơ →MA+→MB+→MC bằng

Cho hình thang MNPQ, MN // PQ, MN = 2PQ. Phát biểu nào dưới đây là đúng?

Phát biểu nào sau đây là sai?

Cho hình chữ nhật ABCD tâm O. Gọi M, N lần lượt là trung điểm của các cạnh AB, AD. Chọn khẳng định đúng trong các khẳng định sau:

Cho hình bình hành ABCD. Mệnh đề nào sau đây đúng?

Cho tam giác đều ABC có AB=a, M là trung điểm của BC. Khi đó →MA+→AC bằng

Leave a Comment Hủy

Mục lục

  1. Tìm giá trị nhỏ nhất của biểu thức F(x; y) = – 2x + y trên miền nghiệm của hệ bất phương trình x – y ≥2x+y ≤4x-5y ≤2.
  2. Cho tam giác ABC đều có cạnh bằng a, gọi H là trung điểm của cạnh BC. Độ dài của vectơ 2(→HA-→HC)bằng
  3. Cho tam giác đều ABC nội tiếp đường tròn tâm O bán kính bằng 1. Gọi M là điểm nằm trên đường tròn (O), độ dài vectơ →MA+→MB+→MC bằng
  4. Cho hình thang MNPQ, MN // PQ, MN = 2PQ. Phát biểu nào dưới đây là đúng?
  5. Phát biểu nào sau đây là sai?
  6. Cho hình chữ nhật ABCD tâm O. Gọi M, N lần lượt là trung điểm của các cạnh AB, AD. Chọn khẳng định đúng trong các khẳng định sau:
  7. Cho hình bình hành ABCD. Mệnh đề nào sau đây đúng?
  8. Cho tam giác đều ABC có AB=a, M là trung điểm của BC. Khi đó →MA+→AC bằng
  9. Cho hình bình hành ABCD với điểm K thỏa mãn →KA+→KC=→AB thì
  10. Cho hình chữ nhật ABCD. Hãy chọn khẳng định đúng.
  11. Đẳng thức nào sau đây, mô tả đúng hình vẽ bên?
  12. Một người đứng ở vị trí A trên nóc một ngôi nhà cao 8m đang quan sát một cây cao cách ngôi nhà 25m và đo được BAC =43°44′. Chiều cao của cây gần với kết quả nào nhất sau đây?
  13. Cho tam giác ABC có BC = 50 cm, B = 65o C = 45o Tính chu vi của tam giác ABC (làm tròn kết quả đến hàng phần mười theo đơn vị xăng – ti – mét):
  14. Cho tam giác ABC, có các cạnh AB = c, AC = b, BC = a. Định lí sin được phát biểu:
  15. Trong các công thức dưới đây, công thức nào sai về cách tính diện tích tam giác ABC? Biết AB = c, AC = b, BC = a, ha, hb, hc lần lượt là các đường cao kẻ từ đỉnh A, B, C, r là bán kính đường tròn nội tiếp, R là bán kính đường tròn ngoại tiếp tam giác ABC.
  16. Cho điểm M(x0; y0) nằm trên đường tròn đơn vị thỏa mãn xOM = α. Khi đó phát biểu nào dưới đây là sai?
  17. Cho tam giác ABC, ta có các đẳng thức: (I) sinA2 = sinB+C2; (II) tanA2 = cotB+C2; (III) sinA = sin(B + C). Có bao nhiêu đẳng thức đúng?
  18. Tính giá trị biểu thức: A = cos 0° + cos 40° + cos 120° + cos 140°
  19. Cho sin35° ≈ 0,57. Giá trị của sin145° gần với giá trị nào nhất sau đây:
  20. Phần mặt phẳng không bị gạch chéo trong hình vẽ bên (kể cả biên) là biểu diễn hình học tập nghiệm của hệ bất phương trình nào dưới đây?
  21. Bất phương trình nào sau đây không là bất phương trình bậc nhất một ẩn?
  22. Cặp số (x; y) nào sau đây là nghiệm của bất phương trình 5x – 3y ≤ 2?
  23. Lớp 10A1 có 6 học sinh giỏi Toán, 4 học sinh giỏi Lý, 5 học sinh giỏi Hóa, 2 học sinh giỏi Toán và Lý, 3 học sinh giỏi Toán và Hóa, 2 học sinh giỏi Lý và Hóa, 1 học sinh giỏi cả 3 môn Toán, Lý, Hóa. Số học sinh giỏi ít nhất một môn (Toán, Lý, Hóa) của lớp 10A1 là:
  24. Hình vẽ sau đây (phần không bị gạch) là biểu diễn của tập hợp nào?
  25. Cho hai tập hợp (1; 3) và [2; 4]. Giao của hai tập hợp đã cho là
  26. Số phần tử của tập hợp A = {k2 + 1| k ∈ ℤ, |k| ≤ 2} bằng
  27. Cho A = {0; 1; 2; 3; 4} và B = {2; 3; 4; 5; 6}. Tập hợp (A \ B) ∪ (B \ A) bằng?
  28. Mệnh đề phủ định của mệnh đề “Phương trình ax2 + bx + c = 0 (a ≠ 0) vô nghiệm” là:
  29. Cho mệnh đề chứa biến P(n): “n2 chia hết cho 4 ” với n là số nguyên. Chọn mệnh đề đúng trong các mệnh đề sau:
  30. Cho tập hợp A và a là một phần tử của tập hợp A. Trong các mệnh đề sau, mệnh đề nào sai?
  31. Lớp 10A có 36 học sinh, trong đó mỗi học sinh đều biết chơi ít nhất một trong hai môn thể thao đá cầu hoặc cầu lông. Biết rằng lớp 10A có 25 học sinh biết chơi đá cầu, có 20 học sinh biết chơi cầu lông. Hỏi lớp 10A có bao nhiêu học sinh biết chơi cả hai môn đá cầu và cầu lông?
  32. Anh Trung có kế hoạch đầu tư 400 triệu đồng vào hai khoản X và Y. Để đạt được lợi nhuận thì khoản X phải đầu tư ít nhất 100 triệu đồng và số tiền đầu tư cho khoản Y không nhỏ hơn số tiền cho khoản X. Viết hệ bất phương trình bậc nhất hai ẩn để mô tả hai khoản đầu tư đó và biểu diễn miền nghiệm của hệ bất phương trình vừa tìm được.
  33. Để lắp đường dây điện cao thế từ vị trí A đến vị trí B, do phải tránh một ngọn núi nên người ta phải nối đường dây từ vị trí A đến vị trí C dài 20 km, sau đó nối đường dây từ vị trí C đến vị trí B dài 12km. Góc tạo bởi dây AC và CB là 75°. Tính chiều dài tăng thêm vì không thể nối trực tiếp từ A đến B.
  34. Giải tam giác ABC biết ABC có b = 14, c = 25 và A = 120°.
  35. Miền nghiệm của bất phương trình 2x – 3y > 5 là nửa mặt phẳng (không kể đường thẳng d: 2x – 3y = 5) không chứa điểm có tọa độ nào sau đây?
  36. Cho tam giác ABC có AB = 6,5 cm, AC = 8,5 cm, A=185o. Tính độ dài cạnh BC (làm tròn kết quả đến hàng phần mười theo đơn vị tương ứng).
  37. Giá trị biểu thức T = sin225° + sin275° + sin2115° + sin2165° là:
  38. Cho 0° < α < 180°. Chọn câu trả lời đúng.
  39. Cặp số nào sau đây không là nghiệm của hệ bất phương trình x + y ≤ 22x – 3y &gt; -2
  40. Cặp số nào sau đây là nghiệm của bất phương trình – 3x + 5y ≤ 6.
  41. Cho hình chữ nhật ABCD có AB = 3a, BC = 4a. Độ dài của vectơ →AB+→AD bằng
  42. Hàm số f(x) = x2 đồng biến trên khoảng nào dưới đây ?
  43. Cho hai tập hợp A = [– 2; 3), B = [1; 5]. Khi đó A ∩ B là tập hợp nào dưới đây ?
  44. Cho hai tập hợp A = {1; 2; 3; 4; 5} và B = {1; 3; 5; 7}. Số phần tử của tập hợp A\B là
  45. Cho I là trung điểm của đoạn thẳng AB và M là một điểm tùy ý. Mệnh đề nào dưới đây đúng?
  46. Vectơ có điểm đầu là A và điểm cuối là B được kí hiệu là:
  47. Cho các vectơ →u; →v;→x;→y như trong hình: Mệnh đề nào dưới đây là đúng?
  48. Trong mặt phẳng Oxy đồ thị của hàm số y = x2 – 2x + 3 có trục đối xứng là đường thẳng nào dưới đây ?
  49. Trong mặt phẳng Oxy, biết điểm M(2; y0) thuộc đồ thị của hàm số y = 2x – 3. Giá trị của y0 bằng:
  50. Trong các mệnh đề dưới đây, mệnh đề nào đúng ?
  51. Hàm số nào dưới đây có đồ thị là đường thẳng như trong hình bên ?
  52. Cho hàm số f(x) = x3 – 2. Giá trị f(1) bằng bao nhiêu?

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán