Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SGK Toán 9 – Chân trời

Giải SGK Toán 9 Bài 4 (Chân trời sáng tạo): Hình quạt tròn và hình vành khuyên

By admin 25/07/2024 0

Giải bài tập Toán 9 Bài 4: Hình quạt tròn và hình vành khuyên

Khởi động trang 98 Toán 9 Tập 1: Số lượng cây ăn trái của trang trại Đất Lành được cho trong bảng sau:

Khởi động trang 98 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Số liệu trên được biểu diễn trong biểu đồ hình quạt tròn bên.

Hình các phần được chia từ hình tròn trong biểu đồ bên gọi là gì? Làm thế nào để vẽ được chúng?

Lời giải:

Sau bài học này, chúng ta sẽ giải quyết được câu hỏi trên như sau:

Hình các phần được chia từ hình tròn trong biểu đồ gọi là hình quạt tròn.

Để vẽ được hình quạt tròn, ta vẽ một đường tròn và chia đường tròn đã vẽ thành các cung, tô màu phần bên trong các cung ta được các hình quạt tròn.

1. Độ dài cung tròn

Khám phá 1 trang 98 Toán 9 Tập 1: Một hàng rào bao quanh một sân cỏ hình tròn có bán kính 10 m (Hình 1) được ghép bởi 360 phần bằng nhau. Hãy tính:

a) Độ dài của toàn bộ hàng rào.

b) Độ dài của mỗi phần hàng rào.

c) Độ dài của n phần hàng rào.

Khám phá 1 trang 98 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Lời giải:

a) Độ dài củ toàn bộ hàng rào (chu vi của đường tròn) là: 2π.10 = 20π (m).

b) Độ dài của mỗi phần hàng rào là: 20π360=π18 (m).

c) Độ dài của n phần hàng rào là: n⋅π18 (m).

Thực hành 1 trang 99 Toán 9 Tập 1: Tính độ dài cung 72° của một đường tròn có bán kính 25 cm.

Lời giải:

Cung 72°, bán kính 25 cm có độ dài là:

l=πRn180=π⋅25⋅72180=10π≈31,42(cm).

Vận dụng 1 trang 99 Toán 9 Tập 1: Tính độ dài của đoạn hàng rào từ A đến B của sân cỏ trong Hình 3, cho biết AOB^=80°.

Vận dụng 1 trang 99 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Lời giải:

Xét đường tròn (O), có sđAB⏜=AOB^=80°.

Cung AB có số đo 80°, bán kính 10 m có độ dài là:

l=πRn180=π⋅10⋅80180=409π≈13,96(cm).

Vậy độ dài của đoạn hàng rào từ A đến B của sân cỏ trong Hình 3 khoảng 13,96 m.

2. Hình quạt tròn

Khám phá 2 trang 99 Toán 9 Tập 1: a) Ta có thể tính diện tích của miếng bánh pizza trong Hình 4a theo góc ở tâm và bán kính của ổ bánh hay không?

b) Chia một hình tròn bán kính R thành 360 phần bằng nhau.

i) Tính diện tích của mỗi phần đó.

ii) Tính diện tích phần hình tròn ghép bởi n phần bằng nhau nói trên (Hình 4b).

Khám phá 2 trang 99 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Lời giải:

a) Ta có thể tính diện tích của miếng bánh pizza trong Hình 4a theo góc ở tâm và bán kính của ổ bánh.

b) Một hình tròn bán kính R có diện tích là: πR2 (đơn vị diện tích).

i) Chia hình tròn thành 360 phần bằng nhau thì diện tích mỗi phần là: πR2360 (đơn vị diện tích).

ii) Diện tích phần hình tròn ghép bởi n phần bằng nhau là: n⋅πR2360 (đơn vị diện tích).

Thực hành 2 trang 100 Toán 9 Tập 1: Tính diện tích hình quạt tròn bán kính R = 20 cm, ứng với cung 72°.

Lời giải:

Hình quạt tròn bán kính R = 20 cm, ứng với cung 72° có diện tích là:

S=πR2n360=π⋅202⋅72360=80π≈251,33(cm2).

Vận dụng 2 trang 100 Toán 9 Tập 1: Tính diện tích của miếng bánh pizza có dạng hình quạt tròn trong Hình 8. Biết OA = 15 cm và AOB^=55°

Vận dụng 2 trang 100 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Lời giải:

Ta có sđAB⏜=AOB^=55°.

Diện tích hình quạt tròn OAB bán kính 15 cm, ứng với cung 55° là:

S=πR2n360=π⋅152⋅55360=2758π≈108,00(cm2).

3. Hình vành khuyên

Khám phá 3 trang 101 Toán 9 Tập 1: a) Vẽ đường tròn (C) tâm O bán kính r = 5 cm và đường tròn (C’) tâm O bán kính R = 8 cm.

b) Tính diện tích S của (C) và diện tích S’ của (C’).

c) Hãy cho biết hiệu số (S’ – S) biểu diễn diện tích của phần nào trên Hình 9.

Khám phá 3 trang 101 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Lời giải:

a)

Khám phá 3 trang 101 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

b) Diện tích S của đường tròn (C) là: S = π.52 = 25π (cm2).

Diện tích S’ của đường tròn (C’) là: S’ = π.82 = 64π (cm2).

c) Hiệu số (S’ – S) biểu diễn diện tích phần giới hạn bởi hai đường tròn (C) và (C’).

Thực hành 3 trang 101 Toán 9 Tập 1: Tính diện tích hình vành khuyên giới hạn bởi hai đường tròn (O; 10 cm) và (O; 20 cm) (kết quả làm tròn đến hàng phần trăm).

Lời giải:

Diện tích hình vành khuyên giới hạn bởi đường tròn (O; 10 cm) và (O; 20 cm) là:

S = π(R2 – r2) = π(202 – 102) = 300π ≈ 942,48 (cm2).

Vận dụng 3 trang 101 Toán 9 Tập 1: Cho hình vành khuyên giới hạn bởi hai đường tròn (O; r) và (O; R) với R > r. Trên đường tròn (O; R) lấy hai điểm B, C sao cho BC vừa là dây cung của (O; R), vừa là tiếp tuyến của đường tròn (O; r) tại A (Hình 11).

a) Tính độ dài đoạn thẳng BC theo r và R.

b) Cho BC=a3. Tính diện tích hình vành khuyên giới hạn bởi hai đường tròn (O; r) và (O; R) theo a.

Vận dụng 3 trang 101 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Lời giải:

a) Vì BC là tiếp tuyến của đường tròn (O; r) tại A nên BC ⊥ OA.

Xét ∆OBC có OB = OC nên ∆OBC cân tại O. Do đó đường cao OA đồng thời là đường trung tuyến của tam giác.

Suy ra A là trung điểm của BC nên BC = 2AB.

Xét ∆OAB vuông tại A, theo định lí Pythagore, ta có: OB2 = OA2 + AB2.

Suy ra AB2 = OB2 – OA2 = R2 – r2.

Do đó AB=R2−r2.

Khi đó BC=2R2−r2.

b) Theo bài, BC=a3, do đó 2R2−r2=a3

Suy ra R2−r2=a32 nên R2−r2=a322=3a24.

Diện tích hình vành khuyên giới hạn bởi hai đường tròn (O; r) và (O; R) là:

S=πR2–r2=π⋅3a24=3π4a2.

Bài tập

Bài 1 trang 102 Toán 9 Tập 1: Tính độ dài các cung 30°; 90°; 120° của đường tròn (O; 6 cm).

Lời giải:

Xét đường tròn (O; 6 cm):

⦁ Cung 30°, bán kính 6 cm có độ dài là:

l=πRn180=π⋅6⋅30180=π≈3,14(cm).

⦁ Cung 90°, bán kính 6 cm có độ dài là:

l=πRn180=π⋅6⋅90180=3π≈9,42(cm).

⦁ Cung 120°, bán kính 6 cm có độ dài là:

l=πRn180=π⋅6⋅120180=4π≈12,57(cm).

Bài 2 trang 102 Toán 9 Tập 1: Tính diện tích các hình quạt tròn ứng với cung có số đo lần lượt là 30°; 90°; 120° của hình tròn (O; 12 cm).

Lời giải:

Xét hình tròn (O; 12 cm):

⦁ Hình quạt tròn bán kính R = 12 cm, ứng với cung 30° có diện tích là:

S=πR2n360=π⋅122⋅30360=12π≈37,70(cm2).

⦁ Hình quạt tròn bán kính R = 12 cm, ứng với cung 90° có diện tích là:

S=πR2n360=π⋅122⋅90360=36π≈113,10(cm2).

⦁ Hình quạt tròn bán kính R = 12 cm, ứng với cung 120° có diện tích là:

S=πR2n360=π⋅122⋅120360=48π≈150,80(cm2).

Bài 3 trang 102 Toán 9 Tập 1: Tính diện tích các hình quạt tròn ứng với cung có độ dài lần lượt là 8 cm, 15 cm của hình tròn (O; 5 cm).

Lời giải:

Diện tích của hình quạt tròn bán kính R (cm), ứng với cung n° là:

S=πR2n360=πRn180⋅R2=l⋅R2(cm2).

Xét hình tròn (O; 5 cm):

⦁ Nếu cung có độ dài 8 cm thì diện tích hình quạt tròn tương ứng là:

S=l⋅R2=8⋅52=20(cm2).

⦁ Nếu cung có độ dài 15 cm thì diện tích hình quạt tròn tương ứng là:

S=l⋅R2=15⋅52=37,5(cm2).

Bài 4 trang 102 Toán 9 Tập 1: Tính diện tích hình vành khuyên giới hạn bởi hai đường tròn (O; 9 cm) và (O; 12 cm).

Lời giải:

Diện tích hình vành khuyên giới hạn bởi hai đường tròn (O; 9 cm) và (O; 12 cm) là:

S = π(R2 – r2) = π(122 – 92) = 63π ≈ 197,92 (cm2).

Bài 5 trang 102 Toán 9 Tập 1: Tính diện tích hình viên phân giới hạn bởi dây cung có độ dài là 55 cm và cung có số đo là 95° (Hình 12).

Bài 5 trang 102 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Lời giải:

Gọi các điểm như hình vẽ. Kẻ OH ⊥ AB.

Bài 5 trang 102 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Xét ∆OAB có OA = OB nên ∆OAB cân tại O. Do đó đường cao OH đồng thời là đường phân giác và đường trung tuyến của tam giác.

Khi đó AOH^=12AOB^=12⋅95°=47,5° và H là trung điểm của AB hay AH=AB2=552=27,5(cm).

Xét ∆OAH vuông tại H, ta có:

⦁ AH=OA⋅cosAOH^. Suy ra OA=AHcosAOH^=27,5cos47,5°≈40,71(cm).

⦁ OH=AH⋅cotAOH^=27,5⋅cot47,5≈25,20(cm).

Diện tích tam giác OAB là: S1=12OH⋅AB≈12⋅25,20⋅55=693(cm2).

Diện tích hình quạt tròn OAB là:

S2=π⋅OA2⋅n360≈π⋅40,712⋅95360≈1373,96(cm2).

Diện tích hình viên phân cần tìm là:

S=S2−S1≈1373,96−693=680,96(cm2).

Bài 6 trang 102 Toán 9 Tập 1: Một máy kéo nông nghiệp có đường kính bánh xe sau là 124 cm và đường kính bánh xe trước là 80 cm. Hỏi khi bánh xe sau lăn được 20 vòng thì bánh xe trước lăn được bao nhiêu vòng?

Bài 6 trang 102 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Lời giải:

Chu vi của bánh xe sau là: 2πR = dπ = 124π (cm).

Quãng đường mà bánh xe sau lăn được 20 vòng là: 124π.20 = 2 480π (cm).

Chu vi của bánh xe trước là: 2πR’ = d’π = 80π (cm).

Khi đó, số vòng mà bánh xe trước lăn được là: 2480π80π=31 (vòng).

Bài 7 trang 102 Toán 9 Tập 1: Thành phố Đà Lạt nằm vào khoảng 11°58’ vĩ độ Bắc. Mỗi vòng kinh tuyến của Trái Đất dài khoảng 40 000 km. Hãy tính độ dài cung kinh tuyến từ Đà Lạt đến xích đạo.

(Nguồn: https://vi.wikipedia.org/wiki/Đà-Lạt.)

Bài 7 trang 102 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Lời giải:

Mỗi vòng kinh tuyến của Trái Đất dài khoảng 40 000 km nên bán kính của Trái Đất là khoảng: R=400002π=20000π(km).

Thành phố Đà Lạt nằm vào khoảng 11°58’ vĩ độ Bắc nên cung kinh tuyến từ Đà Lạt đến xích đạo có số đo là 11°58‘=115860°.

Vậy độ dài cung kinh tuyến từ Đà Lạt đến xích đạo là:

l=πRn180=π⋅20000π⋅115860180=3590027≈1329,63(km).

Xem thêm các bài giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:

Bài 3. Góc ở tâm, góc nội tiếp

Bài 4. Hình quạt tròn và hình vành khuyên

Bài tập cuối chương 5

Hoạt động 1. Làm giác kế đo góc nâng đơn giản

Hoạt động 2. Vẽ đường tròn bằng phần mềm GeoGebra

Bài 1. Hàm số và đồ thị của hàm số y = ax2 (a ≠ 0)

Tags : Tags 1. Vẽ đồ thị của các hàm số sau: y = 2x – 3
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải SGK Toán 9 Bài 3 (Cánh diều): Tiếp tuyến của đường tròn

Next post

Giải SGK Toán 9 Bài 4 (Cánh diều): Góc ở tâm. Góc nội tiếp

Bài liên quan:

Giải SGK Toán 9 Hoạt động 5 (Chân trời sáng tạo): Cắt da giác đều làm vòng quay may mắn

Giải SGK Toán 9 Hoạt động 4 (Chân trời sáng tạo): Chuyển dữ liệu từ bảng vào biểu đồ trên phần mềm Microsoft Word

Giải SGK Toán 9 Hoạt động 3 (Chân trời sáng tạo): Vẽ đồ thị hàm số bậc hai y = ax2 (a ≠ 0) bằng phần mềm GeoGebra

Giải SGK Toán 9 (Chân trời sáng tạo): Bài tập cuối chương 10

Giải SGK Toán 9 Bài 3 (Chân trời sáng tạo): Hình cầu

Giải SGK Toán 9 Bài 2 (Chân trời sáng tạo): Hình nón

Giải SGK Toán 9 Bài 1 (Chân trời sáng tạo): Hình trụ

Giải SGK Toán 9 (Chân trời sáng tạo): Bài tập cuối chương 9

Leave a Comment Hủy

Mục lục

  1. Giải sgk Toán 9 Chân trời sáng tạo | Giải bài tập Toán 9 Chân trời sáng tạo Tập 1, Tập 2 (hay, chi tiết)
  2. Giải SGK Toán 9 Bài 1 (Chân trời sáng tạo): Phương trình quy về phương trình bậc nhất một ẩn
  3. Giải SGK Toán 9 Bài 2 (Chân trời sáng tạo): Phương trình bậc nhất hai ẩn và hệ hai phương trình bậc nhất hai ẩn
  4. Giải SGK Toán 9 Bài 3 (Chân trời sáng tạo): Giải hệ hai phương trình bậc nhất hai ẩn
  5. Giải SGK Toán 9 (Chân trời sáng tạo): Bài tập cuối chương 1 trang 22
  6. Giải SGK Toán 9 Bài 1 (Chân trời sáng tạo): Bất đẳng thức
  7. Giải SGK Toán 9 Bài 2 (Chân trời sáng tạo): Bất phương trình bậc nhất một ẩn
  8. Giải SGK Toán 9 (Chân trời sáng tạo): Bài tập cuối chương 2 trang 34
  9. Giải SGK Toán 9 Bài 1 (Chân trời sáng tạo): Căn bậc hai
  10. Giải SGK Toán 9 Bài 2 (Chân trời sáng tạo): Căn bậc ba
  11. Giải SGK Toán 9 Bài 3 (Chân trời sáng tạo): Tính chất của phép khai phương
  12. Giải SGK Toán 9 Bài 4 (Chân trời sáng tạo): Biến đổi đơn giản biểu thức chứa căn thức bậc hai
  13. Giải SGK Toán 9 (Chân trời sáng tạo): Bài tập cuối chương 3 trang 57
  14. Giải SGK Toán 9 Bài 1 (Chân trời sáng tạo): Tỉ số lượng giác của góc nhọn
  15. Giải SGK Toán 9 Bài 2 (Chân trời sáng tạo): Hệ thức giữa cạnh và góc của tam giác vuông
  16. Giải SGK Toán 9 (Chân trời sáng tạo): Bài tập cuối chương 4 trang 72
  17. Giải SGK Toán 9 Bài 1 (Chân trời sáng tạo): Đường tròn
  18. Giải SGK Toán 9 Bài 2 (Chân trời sáng tạo): Tiếp tuyến của đường tròn
  19. Giải SGK Toán 9 Bài 3 (Chân trời sáng tạo): Góc ở tâm, góc nội tiếp
  20. Giải SGK Toán 9 (Chân trời sáng tạo): Bài tập cuối chương 5 trang 103
  21. Giải SGK Toán 9 Hoạt động 1 (Chân trời sáng tạo): Làm giác kế đo góc nâng đơn giản
  22. Giải SGK Toán 9 Hoạt động 2 (Chân trời sáng tạo): Vẽ đường tròn bằng phần mềm GeoGebra
  23. Giải SGK Toán 9 Bài 1 (Chân trời sáng tạo): Hàm số và đồ thị của hàm số y = ax2 (a ≠ 0)
  24. Giải SGK Toán 9 Bài 2 (Chân trời sáng tạo): Phương trình bậc hai một ẩn
  25. Giải SGK Toán 9 Bài 3 (Chân trời sáng tạo): Định lí Viète
  26. Giải SGK Toán 9 (Chân trời sáng tạo): Bài tập cuối chương 6
  27. Giải SGK Toán 9 Bài 1 (Chân trời sáng tạo): Bảng tần số và biểu đồ tần số
  28. Giải SGK Toán 9 Bài 2 (Chân trời sáng tạo): Bảng tần số tương dối và biểu dồ tần số tương đối
  29. Giải SGK Toán 9 Bài 3 (Chân trời sáng tạo): Biểu diễn số liệu ghép nhóm
  30. Giải SGK Toán 9 (Chân trời sáng tạo): Bài tập cuối chương 7
  31. Giải SGK Toán 9 Bài 1 (Chân trời sáng tạo): Không gian mẫu và biến cố
  32. Giải SGK Toán 9 Bài 2 (Chân trời sáng tạo): Xác suất của biến cố
  33. Giải SGK Toán 9 (Chân trời sáng tạo): Bài tập cuối chương 8
  34. Giải SGK Toán 9 Bài 1 (Chân trời sáng tạo): Đường tròn ngoại tiếp tam giác. Đường tròn nội tiếp tam giác
  35. Giải SGK Toán 9 Bài 2 (Chân trời sáng tạo): Tứ giác nội tiếp
  36. Giải SGK Toán 9 Bài 3 (Chân trời sáng tạo): Đa giác đều và phép quay
  37. Giải SGK Toán 9 (Chân trời sáng tạo): Bài tập cuối chương 9
  38. Giải SGK Toán 9 Bài 1 (Chân trời sáng tạo): Hình trụ
  39. Giải SGK Toán 9 Bài 2 (Chân trời sáng tạo): Hình nón
  40. Giải SGK Toán 9 Bài 3 (Chân trời sáng tạo): Hình cầu
  41. Giải SGK Toán 9 (Chân trời sáng tạo): Bài tập cuối chương 10
  42. Giải SGK Toán 9 Hoạt động 3 (Chân trời sáng tạo): Vẽ đồ thị hàm số bậc hai y = ax2 (a ≠ 0) bằng phần mềm GeoGebra
  43. Giải SGK Toán 9 Hoạt động 4 (Chân trời sáng tạo): Chuyển dữ liệu từ bảng vào biểu đồ trên phần mềm Microsoft Word
  44. Giải SGK Toán 9 Hoạt động 5 (Chân trời sáng tạo): Cắt da giác đều làm vòng quay may mắn

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán