• Skip to main content
  • Bỏ qua primary sidebar
  • Môn Văn
  • Học tiếng Anh
  • CNTT
  • Sách Giáo Khoa
  • Tư liệu học tập Tiểu học

Học hỏi Net

Mạng học hỏi cho học sinh và cuộc sống

Bạn đang ở:Trang chủ / Lý thuyết Toán 10 - KNTT / Lý thuyết Bài 27: Thực hành tính xác suất theo định nghĩa cổ điển – KNTT

Lý thuyết Bài 27: Thực hành tính xác suất theo định nghĩa cổ điển – KNTT

25/07/2022 by Minh Đạo Để lại bình luận

Tóm tắt lý thuyết

1.1. Sử dụng phương pháp tổ hợp

Trong nhiêu bài toán, để tính số phần từ của không gian mấu, của các biến cố, ta thường sử dụng các quy tắc đếm, các công thức tính số hoán vị, chỉnh hợp và tổ hợp. 

Ví dụ: Một tổ trong lớp 10A có 10 học sinh trong đó có 6 học sinh nam và 4 học sinh nữ. Giáo viên chọn ngẫu nhiên 6 học sinh trong tổ đó đề tham gia đội tình nguyện Mùa hè xanh. Tính xác suất của hai biền cố sau:

C: “6 học sinh được chọn đều là nam”

D: “Trong 6 học sinh được chọn có 4 nam và 2 nữ”.

Giải

Không gian mẫu là tập tất cả các tập con gồm 6 học sinh trong 10 học sinh. Vậy \(n\left( \Omega  \right) = C_{10}^6 = 210\)

a) Tập C chỉ có một phân tử là tập 6 học sinh nam. Vậy n(C) = 1, do đó \(P\left( C \right) = \frac{1}{{210}}\)

b) Mỗi phần tử của D được hình thành từ hai công đoạn.

Công đoạn 1. Chọn 4 học sinh nam từ 6 học sinh nam, có \(C_6^4 = 15\) (cách chọn).

Công đoạn 2. Chọn 2 học sinh nữ từ 4 học sinh nữ, có \(C_4^2 = 6\) (cách chọn).

Theo quy tắc nhân, tập D có 15.6 = 90 (phần từ). Vậy n(D) = 90. Từ đó \(P\left( D \right) = \frac{{90}}{{210}} = \frac{3}{7}\) 

1.2. Sử dụng sơ đồ hình cây

Trong một số bài toán, phép thử T được hinh thành tử một vài phép thừ, chẳng hạn: gieo xúc xắc liên tiếp bốn lần: lấy ba viên bi, mỗi viên từ một hộp;… Khi đó ta sử dụng sơ đồ hình cây để có thể mô tả đây đủ, trực quan không gian mẫu và biến có cần tính xác suất. 

Ví dụ: Có ba chiếc hộp. Hộp I có chứa ba viên bi: 1 Viên màu đỏ, 1 viên màu xanh và 1 viên màu vàng. Hộp II chứa hai viên bi: 1 viên màu xanh và 1 viên màu vàng. Hộp III chứa hai viên bi: 1 viên màu đỏ và 1 viên màu xanh. Từ mỗi hộp ta lấy ngẫu nhiên một viên bi.

a) Vẽ sơ đồ hình cây để mô tả các phản tử của không gian mẫu.

b) Tính xác suất để trong ba viên bi lấy ra có đúng một viên bị mâu xanh.

Giải

a) Kĩ hiệu Ð, X, V tương ứng là viên bi màu đỏ, màu xanh và màu vàng.

Các kết quả có thể là: ĐXĐ, ĐXX, ĐVĐ, ĐVX, XXĐ, XXX, XVĐ, XVX, VXĐ, VXX, VVĐ, VX.

Do đó \(\Omega \) = {ÐXĐ; ĐXX; ĐVĐ; ĐVX; XXĐ; XXX; XVĐ; XVX; VXĐ; VXX; VVĐ; VVX}.

Vậy n(\(\Omega \)) = 12.

b) Gọi K là biến cố: “Trong ba viên bi lấy ra có đúng một viên bi mâu xanh”. Ta có

K= (ĐXĐ; ÐVX; XVĐ: VXĐ; VVX). Vậy n(K) = 5. Từ đó \(P\left( K \right) = \frac{{n\left( K \right)}}{{n\left( \Omega  \right)}} = \frac{5}{{12}}\)

1.3. Xác suất của biến cố đối

Ta có công thức sau đây liên hệ giữa xác suất của một biển cố với xác suất của biến có đối.

Cho E là một biến cố. Xác suất của biến cố \(\overline E \) liên hệ với xác suất của E bởi công thức sau: 

\(P\left( {\overline E } \right) = 1 – P\left( E \right)\)

 

Ví dụ: Chọn ngẫu nhiên hai số từ tập (1; 2:…. 9). Gọi H là biến cố: “Trong hai số được chọn có ít nhất một số chẵn”.

a) Mô tả không gian mẫu.

b) Biến cố \(\overline H \) là tập con nào của không gian mẫu?

c) Tính \(P\left( {\overline H } \right)\) và \(P\left( H \right)\). 

Giải

a) Không gian mẫu là tập tất cả các tập con có 2 phần tử của tập (1; 2:…. 8; 9).

b) Biến cố \(\overline H \): “Cả hai số được chọn đều là số lẻ”. Khi đó \(\overline H \) là tập tất cả các tập con có 2 phân tử của tập số lẻ {1; 3; 5; 7; 9}.

c) Ta có \(n\left( \Omega  \right) = C_9^2 = 36,n\left( {\overline H } \right) = C_5^2 = 10\) . Vậy \(P\left( {\overline H } \right) = \frac{{10}}{{36}} = \frac{5}{{18}}\).

Từ đó \(P\left( H \right) = 1 – P\left( {\overline H } \right) = 1 – \frac{5}{{18}} = \frac{{13}}{{18}}.\) 

Chú ý: Trong một số bài toán, nêu tính trực tiếp xác suất của biến cổ gặp khó khăn, ta có thể tính gián tiếp bằng cách tính xác suất của biến cố đối của nó.

Bài tập minh họa

Câu 1: Môt tổ trong lớp 10B có 12 học sinh, trong đó có 7 học sinh nam và 5 học sinh nữ. Giáo viên chọn ngẫu nhiên 6 học sinh trong tổ để kiếm tra vở bài tập Toán. Tính xác suất để trong 6 học sinh được chọn số học sinh nữ bằng số học sinh nam.

Hướng dẫn giải

Không gian mẫu: \(n(\Omega )=C_{12}^{6}\) = 924.

Biến cố A: “6 học sinh được chọn số học sinh nữ bằng số học sinh nam”.

Để số học sinh nữ băng số học sinh nam thì chọn 3 nữ và 3 nam. 

\(\Rightarrow\) n(A) = \(C_{7}^{3}.C_{5}^{3}= 350\)

Vậy P(A) = \(\frac{350}{924}=\frac{25}{66}\).

Câu 2: Trong một cuộc tổng điều tra dân số, điều tra viên chọn ngẫu nhiên một gia đình có ba người con và quan tâm giới tính của ba người con này.

a. Vẽ sơ đồ hình ây để mô tả các phần tử của không gian mẫu.

b. Giả thiết rằng khả năng sinh con trai và khả năng sinh con gái là như nhau. Tính xác suất để gia đình đó có một con trai và hai con gái.

Hướng dẫn giải

a.

Vậy \(n(\Omega )\) = 8.

b. Gọi biến cố A: ” gia đình đó có một con trai và hai con gái”.

A = {GTG; TGG; GGT}

(với G là viết tắt của gái, T là viết tắt của trai).

n(A) = 3. Vậy P(A) = \(\frac{3}{8}\)

Thuộc chủ đề:Lý thuyết Toán 10 - KNTT

Bài liên quan:

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

Bài viết mới

  • Giải bài 6 trang 109 SGK Toán 10 Chân trời sáng tạo tập 1 15/08/2022
  • Giải bài 5 trang 109 SGK Toán 10 Chân trời sáng tạo tập 1 15/08/2022
  • Giải bài 4 trang 109 SGK Toán 10 Chân trời sáng tạo tập 1 15/08/2022
  • Giải bài 3 trang 109 SGK Toán 10 Chân trời sáng tạo tập 1 15/08/2022
  • Giải bài 3 trang 109 SGK Toán 10 Chân trời sáng tạo tập 1 15/08/2022




Chuyên mục

Copyright © 2022 · Hocz.Net. Giới thiệu - Liên hệ - Bảo mật - Sitemap.
Học Trắc nghiệm - Lam Van hay - Môn Toán - Sách toán - Hocvn Quiz - Giai Bai tap hay - Lop 12 - Hoc giai