Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 8

Giáo án Luyện tập những hằng đẳng thức (2023) – Toán 8

By admin 17/10/2023 0

Mời các quý thầy cô cùng tham khảo và tải về chi tiết tài liệu dưới đây:

Giáo án Luyện tập những hằng đẳng thức

I . MỤC TIÊU:

Kiến thức: Củng cố kiến thức về các hằng đẳng thức đáng nhớ: Bình phương của một tổng, bình phương của một hiệu, hiệu hai bình phương.

Kĩ năng: Có kĩ năng vận dụng thành thạo các hằng đẳng thức đáng nhớ: Bình phương của một tổng, bình phương của một hiệu, hiệu hai bình phương vào các bài tập có yêu cầu cụ thể trong SGK.

Thái độ:Có ý thức vận dụng các kiến thức đã học vào các bài tính nhẩm.

II. CHUẨN BỊ

– GV: Bảng phụ ghi các bài tập 17, 18, 20, 22, 23, 24a, 25a trang 11, 12 SGK ; phấn màu; máy tính bỏ túi; . . .

– HS: Ôn tập các hằng đẳng thức đáng nhớ: Bình phương của một tổng, bình phương của một hiệu, hiệu hai bình phương, máy tính bỏ túi; . . .

– Phương pháp cơ bản: Nêu và giải quyết vấn đề, hỏi đáp, so sánh, thảo luận nhóm.

III. CÁC BƯỚC LÊN LỚP:

1. Ổn định lớp: KTSS (1 phút)

2. Kiểm tra bài cũ: (8 phút).

HS1: Tính:

a) (x + 2y)2

b) (x – 3y)2.

HS2: Viết biểu thức x2+6x+9 dưới dạng bình phương của một tổng.

3. Bài mới:

Hoạt động của giáo viên

Hoạt động của học sinh

Ghi bảng

Hoạt động 1: Bài tập 20 trang 12 SGK. (6 phút).

– Treo bảng phụ nội dung bài toán.

– Để có câu trả lời đúng trước tiên ta phải tính (x + 2y)2, theo em dựa vào đâu để tính?

– Nếu chúng ta tính (x + 2y)2 mà bằng x2 + 2xy + 4y2 thì kết quả đúng. Ngược lại, nếu tính (x + 2y)2 không bằng x2 + 2xy + 4y2 thì kết quả sai.

– Lưu ý: Ta có thể thực hiện cách khác, viết x2 + 2xy + 4y2 dưới dạng bình phương của một tổng thì vẫn có kết luận như trên.

– Đọc yêu cầu bài toán.

– Ta dựa vào công thức bình phương của một tổng để tính (x + 2y)2.

– Lắng nghe và thực hiện để có câu trả lời.

– Lắng nghe và ghi bài.

Bài tập 20 trang 12 SGK.

Ta có:

(x + 2y)2 = x2 + 2.x.2y + (2y)2

= x2 + 4xy + 4y2

Vậy x2 + 2xy + 4y2 x2 + 4xy + 4y2

Hay (x + 2y)2 = x2 + 2xy + 4y2

Do đó kết quả:

x2 + 2xy + 4y2=(x + 2y)2 là sai.

Hoạt động 2: Bài tập 22 trang 12 SGK. (10 phút).

– Treo bảng phụ nội dung bài toán.

– Hãy giải bài toán bằng phiếu học tập. Gợi ý: Vận dụng công thức các hằng đẳng thức đáng nhớ đã học.

– Sửa hoàn chỉnh lời giải bài toán.

– Đọc yêu cầu bài toán.

– Vận dụng các hằng đẳng thức đáng nhớ: Bình phương của một tổng, bình phương của một hiệu, hiệu hai bình phương vào giải bài toán.

– Lắng nghe, ghi bài.

Bài tập 22 trang 12 SGK.

a) 1012

Ta có:

1012 = (100 + 1)2 = 1002 + 2.100.1 + 12

= 10000 + 200 + 1 = 10201

b) 1992

Ta có:

1992 = (200 – 1)2 = 2002 – 2.200.1 + 12

= 40000 – 400 + 1 = 39601

c) 47.53 = (50 – 3)(50 + 3) = 502 – 32

= 2500 – 9 = 2491

Hoạt động 3: Bài tập 23 trang 12 SGK. (13 phút).

– Treo bảng phụ nội dung bài toán.

– Dạng bài toán chứng minh, ta chỉ cần biến đổi biểu thức một vế bằng vế còn lại.

– Để biến đổi biểu thức của một vế ta dựa vào đâu?

– Cho học sinh thực hiện phần chứng minh theo nhóm.

– Sửa hoàn chỉnh lời giải bài toán.

– Hãy áp dụng vào giải các bài tập theo yêu cầu.

– Cho học sinh thực hiện trên bảng.

– Sửa hoàn chỉnh lời giải bài toán.

– Chốt lại, qua bài toán này ta thấy rằng giữa bình phương của một tổng và bình phương của một hiệu có mối liên quan với nhau.

– Đọc yêu cầu bài toán.

– Để biến đổi biểu thức của một vế ta dựa vào công thức các hằng đẳng thức đáng nhớ: Bình phương của một tổng, bình phương của một hiệu, hiệu hai bình phương đã học.

– Thực hiện lời giải theo nhóm và trình bày lời giải.

– Lắng nghe, ghi bài.

– Đọc yêu cầu vận dụng.

– Thực hiện theo yêu cầu.

– Lắng nghe, ghi bài.

– Lắng nghe và vận dụng.

Bài tập 23 trang 12 SGK.

– Chứng minh:(a + b)2=(a – b)2 + 4ab

Giải

Xét (a – b)2 + 4ab = a2 – 2ab + b2 + 4ab

= a2 + 2ab + b2 = (a + b)2

Vậy: (a + b)2=(a – b)2 + 4ab

– Chứng minh: (a – b)2 = (a + b)2 – 4ab

Giải

Xét (a + b)2 – 4ab = a2+ 2ab + b2 – 4ab

= a2 – 2ab + b2 = (a – b)2

Vậy (a – b)2 = (a + b)2 – 4ab

Áp dụng:

a) (a – b)2 biết a + b = 7 và a.b = 12

Giải

Ta có:

(a – b)2=(a + b)2 – 4ab

= 72 – 4.12

= 49 – 48 = 1

b) (a + b)2 biết a – b = 20 và a.b = 3

Giải

Ta có:

(a + b)2 = (a – b)2 + 4ab

= 202 + 4.3

= 400 + 12 = 412

4. Củng cố: ( 5 phút)

Qua các bài tập vừa giải ta nhận thấy rằng nếu chứng minh một công thức thì ta chỉ biến đổi một trong hai vế để bằng vế còn lại dựa vào các hằng đẳng thức đáng nhớ: Bình phương của một tổng, bình phương của một hiệu, hiệu hai bình phương đã học.

5. Hướng dẫn học ở nhà, dặn dò: (2 phút)

– Xem lại các bài tập đã giải (nội dung, phương pháp).

– Giải tiếp ở nhà các bài tập 21, 24, 25b, c trang 12 SGK.

– Xem trước bài 4: “Những hằng đẳng thức đáng nhớ (tiếp)” (đọc kĩ mục 4, 5 của bài).

Xem thêm

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 74, 75

Next post

Lý thuyết và bài tập Mệnh đề – Tập hợp

Bài liên quan:

Bài giảng điện tử Đơn thức | Kết nối tri thức Giáo án PPT Toán 8

Bài giảng điện tử Toán 8 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 8

20 câu Trắc nghiệm Đơn thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8

Trọn bộ Trắc nghiệm Toán 8 Kết nối tri thức có đáp án

Giải sgk tất cả các môn lớp 8 Kết nối tri thức | Giải sgk các môn lớp 8 chương trình mới

20 Bài tập Đơn thức nhiều biến. Đa thức nhiều biến (sách mới) có đáp án – Toán 8

Giải VTH Toán 8 Kết nối tri thức | Vở thực hành Toán 8 Kết nối tri thức (hay, chi tiết)

Giải SBT Toán 8 Kết nối tri thức | Sách bài tập Toán 8 Kết nối tri thức (hay, chi tiết)

Leave a Comment Hủy

Mục lục

  1. Bài giảng điện tử Đơn thức | Kết nối tri thức Giáo án PPT Toán 8
  2. Bài giảng điện tử Toán 8 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 8
  3. 20 câu Trắc nghiệm Đơn thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  4. Trọn bộ Trắc nghiệm Toán 8 Kết nối tri thức có đáp án
  5. Giải sgk tất cả các môn lớp 8 Kết nối tri thức | Giải sgk các môn lớp 8 chương trình mới
  6. 20 Bài tập Đơn thức nhiều biến. Đa thức nhiều biến (sách mới) có đáp án – Toán 8
  7. Giải VTH Toán 8 Kết nối tri thức | Vở thực hành Toán 8 Kết nối tri thức (hay, chi tiết)
  8. Giải SBT Toán 8 Kết nối tri thức | Sách bài tập Toán 8 Kết nối tri thức (hay, chi tiết)
  9. Giải sgk Toán 8 (cả 3 bộ sách) | Giải bài tập Toán 8 (hay, chi tiết)
  10. Lý thuyết Đơn thức (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  11. Tổng hợp Lý thuyết Toán lớp 8 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 8 Kết nối tri thức hay, chi tiết
  12. Giáo án Toán 8 Bài 1 (Kết nối tri thức 2023): Đơn thức
  13. Giáo án Toán 8 Kết nối tri thức năm 2023 (mới nhất)
  14. Giải SGK Toán 8 Bài 1 (Kết nối tri thức): Đơn thức
  15. Giải sgk Toán 8 Kết nối tri thức | Giải bài tập Toán 8 Kết nối tri thức Tập 1, Tập 2 (hay, chi tiết)
  16. Bài giảng điện tử Đa thức | Kết nối tri thức Giáo án PPT Toán 8
  17. 20 câu Trắc nghiệm Đa thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  18. Lý thuyết Đa thức (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  19. Giáo án Toán 8 Bài 2 (Kết nối tri thức 2023): Đa thức
  20. Giải SGK Toán 8 Bài 2 (Kết nối tri thức): Đa thức
  21. Bài giảng điện tử Phép cộng và phép trừ đa thức | Kết nối tri thức Giáo án PPT Toán 8
  22. 20 câu Trắc nghiệm Phép cộng và phép trừ đa thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  23. 20 Bài tập Các phép tính với đa thức nhiều biến (sách mới) có đáp án – Toán 8
  24. Lý thuyết Phép cộng và phép trừ đa thức (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  25. Giáo án Toán 8 Bài 3 (Kết nối tri thức 2023): Phép cộng và phép trừ đa thức
  26. Giải SGK Toán 8 Bài 3 (Kết nối tri thức): Phép cộng và phép trừ đa thức
  27. Bài giảng điện tử Luyện tập chung trang 17 | Kết nối tri thức Giáo án PPT Toán 8
  28. Giải SGK Toán 8 (Kết nối tri thức) Luyện tập chung trang 17
  29. Bài giảng điện tử Phép nhân đa thức | Kết nối tri thức Giáo án PPT Toán 8
  30. 20 câu Trắc nghiệm Phép nhân đa thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  31. Lý thuyết Phép nhân đa thức (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  32. Giáo án Toán 8 Bài 4 (Kết nối tri thức 2023): Phép nhân đa thức
  33. Giải SGK Toán 8 Bài 4 (Kết nối tri thức): Phép nhân đa thức
  34. Bài giảng điện tử Phép chia đa thức cho đơn thức | Kết nối tri thức Giáo án PPT Toán 8
  35. 20 câu Trắc nghiệm Phép chia đa thức cho đơn thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  36. Lý thuyết Phép chia đa thức cho đơn thức (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  37. Giáo án Toán 8 Bài 5 (Kết nối tri thức 2023): Phép chia đa thức cho đơn thức
  38. Giải SGK Toán 8 Bài 5 (Kết nối tri thức): Phép chia đa thức
  39. Bài giảng điện tử Luyện tập chung trang 25 | Kết nối tri thức Giáo án PPT Toán 8
  40. Giáo án Toán 8 (Kết nối tri thức 2023) Luyện tập chung trang 25
  41. Giải SGK Toán 8 (Kết nối tri thức): Luyện tập chung trang 25
  42. Bài giảng điện tử Bài tập cuối chương 1 trang 27 | Kết nối tri thức Giáo án PPT Toán 8
  43. Sách bài tập Toán 8 (Kết nối tri thức) Bài tập cuối chương 1
  44. Lý thuyết Toán 8 Chương 1 (Kết nối tri thức 2023): Đa thức hay, chi tiết
  45. Giáo án Toán 8 (Kết nối tri thức 2023) Bài tập cuối chương 1
  46. Giải SGK Toán 8 (Kết nối tri thức): Bài tập cuối chương 1 trang 27
  47. Bài giảng điện tử Hiệu hai bình phương. Bình phương của một tổng hay một hiệu | Kết nối tri thức Giáo án PPT Toán 8
  48. 20 câu Trắc nghiệm Hiệu hai bình phương. Bình phương của một tổng hay một hiệu (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  49. Lý thuyết Hiệu hai bình phương. Bình phương của một tổng hay một hiệu (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  50. Giáo án Toán 8 Bài 6 (Kết nối tri thức 2023): Hiệu hai bình phương. Bình phương của một tổng hay một hiệu
  51. Giải SGK Toán 8 Bài 6 (Kết nối tri thức): Hiệu hai bình phương. Bình phương của một tổng hay một hiệu
  52. Bài giảng điện tử Lập phương của một tổng. Lập phương của một hiệu | Kết nối tri thức Giáo án PPT Toán 8

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán