Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 8

Lý thuyết Hình chữ nhật – Hình vuông (Chân trời sáng tạo 2023) hay, chi tiết | Lý thuyết Toán lớp 8

By admin 16/10/2023 0

Lý thuyết Toán lớp 8 Bài 5: Hình chữ nhật – Hình vuông

A. Lý thuyết Hình chữ nhật – Hình vuông

I. Hình chữ nhật

1. Khái niệm

Hình chữ nhật là tứ giác có bốn góc vuông.

 (ảnh 1)

2. Tính chất

Trong hình chữ nhật, hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường.

Nhận xét: Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền.

3. Dấu hiệu nhận biết

Nếu một tứ giác có ba góc vuông thì góc còn lại cũng là góc vuông và tứ giác đó là hình chữ nhật.

II. Hình vuông

1. Khái niệm

Hình vuông là tứ giác có bốn góc vuông và bốn cạnh bằng nhau.

 (ảnh 2)

2. Tính chất 

Trong một hình vuông, hai đường chéo bằng nhau, vuông góc với nhau, cắt nhau tại trung điểm của mỗi đường và là các đường phân giác của các góc của hình vuông.

3. Dấu hiệu nhận biết hình vuông

– Hình chữ nhật có hai cạnh kề bằng nhau là hình vuông.

– Hình chữ nhật có hai đường chéo vuông góc với nhau là hình vuông.

– Hình chữ nhật có một đường chéo là đường phân giác của một góc là hình vuông.

Ví dụ: 

 (ảnh 4)

Hình b là hình chữ nhật vì có 4 góc vuông.

 (ảnh 3)

Hình d là hình vuông.


 

B. Bài tập Hình chữ nhật – Hình vuông

Bài 1.Cho tam giác ADC vuông tại D có đường trung tuyến DE (E ∈ AC). Trên tia đối của tia ED lấy điểm B sao cho EB = ED.

a) Tứ giác ABCD là hình gì? Tại sao?

b) Biết AD = 5 dm, DC = 4 dm. Tính chu vi tứ giác ABCD.

Hướng dẫn giải

Lý thuyết Toán 8 Chân trời sáng tạo Bài 5: Hình chữ nhật – Hình vuông

a) Vì DE là đường trung tuyến của tam giác ADC nên E là trung điểm của AC

Vì EB = ED nên E là trung điểm của BD

Tứ giác ABCD có hai đường chéo AC và BD cắt nhau tại trung điểm mỗi đường nên là hình bình hành.

Theo giả thiết, ta có ADC^=90°nên hình bình hành ABCD là hình chữ nhật.

b) Chu vi hình chữ nhật ABCD là: (5 + 4) . 2 = 18 (dm).

Bài 2.Cho xOy^=90° và tia phân giác Om. Lấy điểm A bất kì trên tia Om. Kẻ AB, AC lần lượt vuông góc với Ox, Oy. Chứng minh OBAC là hình vuông.

Hướng dẫn giải

Lý thuyết Toán 8 Chân trời sáng tạo Bài 5: Hình chữ nhật – Hình vuông

Ta có: AB ⊥ Ox, AC ⊥ Oy nên ABO^=ACO^=90° .

Lại có xOy^=90° nên tứ giác OBAC có ba góc vuông nên là hình chữ nhật.

Mà A nằm trên tia phân giác Om của xOy^ nên OA là tia phân giác của BOC^

Do đó hình chữ nhật OBAC là hình vuông.

Bài 3. Cho hình vuông FIHG. Trên các cạnh FI, IH, HG, GF lần lượt lấy các điểm J, M, N, K sao cho FJ = IM = HN = GK.

a) Chứng minh các tam giác KFJ, JIM, MHN và KNG bằng nhau.

b) Tứ giác KJMN là hình gì? Tại sao?

Hướng dẫn giải

Lý thuyết Toán 8 Chân trời sáng tạo Bài 5: Hình chữ nhật – Hình vuông

a) Vì FIHG là hình vuông nên KFI^=FIH^=IHG^=HGK^=90° và FI = IH = HG = GF (1)

Theo giả thiết: FJ = IM = HN = GK (2)

Từ (1) và (2) suy ra: JI = MH = NG = KF

Xét ∆KFJ và ∆JIM có:

KFJ^=JIM^=90°

FJ = IM (giả thiết);

KF = JI (chứng minh trên)

Do đó DKFJ = DJIM (hai cạnh góc vuông)

Chứng minh tương tự ta cũng có:

∆JIM = ∆MHN; ∆MHN = ∆NGK (hai cạnh góc vuông).

Vậy ∆KFJ = ∆JIM = ∆MHN = ∆NGK.

b) Theo câu b, ∆KFJ = ∆JIM nên KJ = JM (hai cạnh tương ứng).

Tương tự, JM = MN, MN = NK

Suy ra KJ = JM = MN = KN.

Do đó tứ giác KJMN là hình thoi.

Do DKFJ = DJIM (theo câu b) nên JKF^=MJI^ (hai góc tương ứng)

Mà KJF^+JKF^=90° (hai góc nhọn trong tam giác vuông KFJ)

Suy ra KJF^+MJI^=90°

Lại có KJF^+KJM^+MJI^=180° , nên KJM^=90°

Hình thoi KJMN có nên là hình vuông.

Bài 4. Cho DABC nhọn có AB < AC. Gọi N là trung điểm của AC. Lấy điểm D trên tia BN sao cho ND = NB.

a) Chứng minh ABCD là hình bình hành.

b) Kẻ AP ⊥ BC, CQ ⊥ AD. Chứng minh P, N, Q thẳng hàng.

c) DABC cần thêm điều kiện gì để tứ giác ABCD là hình vuông?

Hướng dẫn giải

Lý thuyết Toán 8 Chân trời sáng tạo Bài 5: Hình chữ nhật – Hình vuông

a) Tứ giác ACBD có hai đường chéo AC, BD cắt nhau tại trung điểm N của mỗi đường nên là hình bình hành.

b) Ta có: AP ⊥ BC, AQ // BC (do ACBD là hình bình hành)

Suy ra AP ⊥ AQ.

Tứ giác APCQ có ba góc vuông nên là hình chữ nhật.

Khi đó hai đường chéo AC, PQ cắt nhau tại trung điểm của mỗi đường

Mà N là trung điểm của AC nên N là trung điểm của PQ

Do đó P, N, Q thẳng hàng.

c) Để tứ giác ABCD là hình vuông thì cần AB ⊥ BC, AB = BC

Hay DABC vuông cân tại B.

Video bài giảng Toán 8 Bài 5: Hình chữ nhật – Hình vuông – Chân trời sáng tạo

Xem thêm các bài tóm tắt Lý thuyết Toán lớp 8 Chân trời sáng tạo hay, chi tiết khác:

Lý thuyết Bài 3: Hình thang – Hình thang cân

Lý thuyết Bài 4: Hình bình hành – Hình thoi

Lý thuyết Bài 5: Hình chữ nhật – Hình vuông

Lý thuyết Bài 1: Thu thập và phân loại dữ liệu

Lý thuyết Bài 2: Lựa chọn dạng biểu đồ để biểu diễn dữ liệu

Lý thuyết Bài 3: Phân tích dữ liệu

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Sách bài tập Toán 7 Bài 20 (Kết nối tri thức): Tỉ lệ thức

Next post

Sách bài tập Toán 6 (Cánh diều): Bài tập cuối chương 5 trang 59, 60, 61, 62

Bài liên quan:

Bài giảng điện tử Đơn thức | Kết nối tri thức Giáo án PPT Toán 8

Bài giảng điện tử Toán 8 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 8

20 câu Trắc nghiệm Đơn thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8

Trọn bộ Trắc nghiệm Toán 8 Kết nối tri thức có đáp án

Giải sgk tất cả các môn lớp 8 Kết nối tri thức | Giải sgk các môn lớp 8 chương trình mới

20 Bài tập Đơn thức nhiều biến. Đa thức nhiều biến (sách mới) có đáp án – Toán 8

Giải VTH Toán 8 Kết nối tri thức | Vở thực hành Toán 8 Kết nối tri thức (hay, chi tiết)

Giải SBT Toán 8 Kết nối tri thức | Sách bài tập Toán 8 Kết nối tri thức (hay, chi tiết)

Leave a Comment Hủy

Mục lục

  1. Bài giảng điện tử Đơn thức | Kết nối tri thức Giáo án PPT Toán 8
  2. Bài giảng điện tử Toán 8 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 8
  3. 20 câu Trắc nghiệm Đơn thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  4. Trọn bộ Trắc nghiệm Toán 8 Kết nối tri thức có đáp án
  5. Giải sgk tất cả các môn lớp 8 Kết nối tri thức | Giải sgk các môn lớp 8 chương trình mới
  6. 20 Bài tập Đơn thức nhiều biến. Đa thức nhiều biến (sách mới) có đáp án – Toán 8
  7. Giải VTH Toán 8 Kết nối tri thức | Vở thực hành Toán 8 Kết nối tri thức (hay, chi tiết)
  8. Giải SBT Toán 8 Kết nối tri thức | Sách bài tập Toán 8 Kết nối tri thức (hay, chi tiết)
  9. Giải sgk Toán 8 (cả 3 bộ sách) | Giải bài tập Toán 8 (hay, chi tiết)
  10. Lý thuyết Đơn thức (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  11. Tổng hợp Lý thuyết Toán lớp 8 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 8 Kết nối tri thức hay, chi tiết
  12. Giáo án Toán 8 Bài 1 (Kết nối tri thức 2023): Đơn thức
  13. Giáo án Toán 8 Kết nối tri thức năm 2023 (mới nhất)
  14. Giải SGK Toán 8 Bài 1 (Kết nối tri thức): Đơn thức
  15. Giải sgk Toán 8 Kết nối tri thức | Giải bài tập Toán 8 Kết nối tri thức Tập 1, Tập 2 (hay, chi tiết)
  16. Bài giảng điện tử Đa thức | Kết nối tri thức Giáo án PPT Toán 8
  17. 20 câu Trắc nghiệm Đa thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  18. Lý thuyết Đa thức (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  19. Giáo án Toán 8 Bài 2 (Kết nối tri thức 2023): Đa thức
  20. Giải SGK Toán 8 Bài 2 (Kết nối tri thức): Đa thức
  21. Bài giảng điện tử Phép cộng và phép trừ đa thức | Kết nối tri thức Giáo án PPT Toán 8
  22. 20 câu Trắc nghiệm Phép cộng và phép trừ đa thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  23. 20 Bài tập Các phép tính với đa thức nhiều biến (sách mới) có đáp án – Toán 8
  24. Lý thuyết Phép cộng và phép trừ đa thức (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  25. Giáo án Toán 8 Bài 3 (Kết nối tri thức 2023): Phép cộng và phép trừ đa thức
  26. Giải SGK Toán 8 Bài 3 (Kết nối tri thức): Phép cộng và phép trừ đa thức
  27. Bài giảng điện tử Luyện tập chung trang 17 | Kết nối tri thức Giáo án PPT Toán 8
  28. Giải SGK Toán 8 (Kết nối tri thức) Luyện tập chung trang 17
  29. Bài giảng điện tử Phép nhân đa thức | Kết nối tri thức Giáo án PPT Toán 8
  30. 20 câu Trắc nghiệm Phép nhân đa thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  31. Lý thuyết Phép nhân đa thức (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  32. Giáo án Toán 8 Bài 4 (Kết nối tri thức 2023): Phép nhân đa thức
  33. Giải SGK Toán 8 Bài 4 (Kết nối tri thức): Phép nhân đa thức
  34. Bài giảng điện tử Phép chia đa thức cho đơn thức | Kết nối tri thức Giáo án PPT Toán 8
  35. 20 câu Trắc nghiệm Phép chia đa thức cho đơn thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  36. Lý thuyết Phép chia đa thức cho đơn thức (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  37. Giáo án Toán 8 Bài 5 (Kết nối tri thức 2023): Phép chia đa thức cho đơn thức
  38. Giải SGK Toán 8 Bài 5 (Kết nối tri thức): Phép chia đa thức
  39. Bài giảng điện tử Luyện tập chung trang 25 | Kết nối tri thức Giáo án PPT Toán 8
  40. Giáo án Toán 8 (Kết nối tri thức 2023) Luyện tập chung trang 25
  41. Giải SGK Toán 8 (Kết nối tri thức): Luyện tập chung trang 25
  42. Bài giảng điện tử Bài tập cuối chương 1 trang 27 | Kết nối tri thức Giáo án PPT Toán 8
  43. Sách bài tập Toán 8 (Kết nối tri thức) Bài tập cuối chương 1
  44. Lý thuyết Toán 8 Chương 1 (Kết nối tri thức 2023): Đa thức hay, chi tiết
  45. Giáo án Toán 8 (Kết nối tri thức 2023) Bài tập cuối chương 1
  46. Giải SGK Toán 8 (Kết nối tri thức): Bài tập cuối chương 1 trang 27
  47. Bài giảng điện tử Hiệu hai bình phương. Bình phương của một tổng hay một hiệu | Kết nối tri thức Giáo án PPT Toán 8
  48. 20 câu Trắc nghiệm Hiệu hai bình phương. Bình phương của một tổng hay một hiệu (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  49. Lý thuyết Hiệu hai bình phương. Bình phương của một tổng hay một hiệu (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  50. Giáo án Toán 8 Bài 6 (Kết nối tri thức 2023): Hiệu hai bình phương. Bình phương của một tổng hay một hiệu
  51. Giải SGK Toán 8 Bài 6 (Kết nối tri thức): Hiệu hai bình phương. Bình phương của một tổng hay một hiệu
  52. Bài giảng điện tử Lập phương của một tổng. Lập phương của một hiệu | Kết nối tri thức Giáo án PPT Toán 8

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán