Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 8

Lý thuyết Hình chữ nhật (mới 2023 + bài tập) – Toán 8

By admin 18/10/2023 0

Tài liệu Bài tập Hình chữ nhật hình học toán 8 gồm các nội dung chính sau:

A. Lý thuyết

– tóm tắt lý thuyết ngắn gọn.

B. Các dạng bài tập

– gồm 2 dạng bài tập vận dụng có đáp án và lời giải chi tiết giúp học sinh tự rèn luyện cách giải các dạng Bài tập Hình chữ nhật hình học toán 8.

Mời các quý thầy cô và các em học sinh cùng tham khảo và tải về chi tiết tài liệu dưới đây:

Bài tập Hình chữ nhật hình học toán 8 (ảnh 1)

HÌNH CHỮ NHẬT

A. Lý thuyết

Hình chữ nhật là tứ giác có bốn góc vuông.

Từ định nghĩa hình chữ nhật, ta suy ra: Hình chữ nhật cũng là một hình bình hành, một hình thang cân.

ABCD là hình chữ nhật  ABCD là  hình  bình  hànhhình  thang  cân

Tính chất:

• Hình chữ nhật có tất cả các tính chất của hình hành, của hình thang cân.

• Từ tính chất của hình thang cân và hình bình hành: Trong hình chữ nhật, hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường.

Dấu hiệu nhận biết:

• Tứ giác có ba góc vuông là hình chữ nhật

• Hình thang cân có một góc vuông là hình chữ nhật.

• Hình bình hành có một góc vuông là hình chữ nhật

• Hình bình hành có hai đường chéo bằng nhau là hình chữ nhật.

Định lí: Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền. Nếu một tam giác có đường trung tuyến ứng với một cạnh bằng nửa cạnh ấy thì tam giác đó là tam giác vuông.

Bài tập Hình chữ nhật hình học toán 8 (ảnh 2)

 ABCD  vuoâng  taïi  AMA=MB⇒AM=12BC

 

AM=12BCMA=MB⇒ΔABC vuông tại A

B. Các dạng bài tập

Dạng 1. Vận dụng dấu hiệu nhận biết để chứng minh một tứ giác là hình chữ nhật

Dấu hiệu nhận biết:

• Tứ giác có ba góc vuông là hình chữ nhật

• Hình thang cân có một góc vuông là hình chữ nhật.

• Hình bình hành có một góc vuông là hình chữ nhật

• Hình bình hành có hai đường chéo bằng nhau là hình chữ nhật.

Bài 1. Cho tam giác ABC, đường cao AH. Gọi I là trung điểm của AC, E là điểm đối xứng với H qua I. Gọi M, N lần lượt là trung điểm của HC, CE. Các đường thẳng AM, AN cắt HE tại G và K.

a) Chứng minh tứ giác AHCE là hình chữ nhật.

b) Chứng minh HG = GK = KE.

Bài 2. Cho tứ giác ABCD có hai đường chéo vuông góc với nhau. Gọi E, F, G, H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA. Tứ giác EFGH là hình gì?

ĐS: EFGH là hình chữ nhật.

Bài 3. Cho tam giác ABC vuông tại A. Về phía ngoài tam giác ABC, vẽ hai tam giác vuông cân ADB (DA = DB) và ACE (EA = EC). Gọi M là trung điểm của BC, I là giao điểm của DM với AB, K là giao điểm của EM với AC. Chứng minh:

a) Ba điểm D, A, E thẳng hàng.

b) Tứ giác IAKM là hình chữ nhật.

c) Tam giác DME là tam giác vuông cân. 

Bài 4. Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi M, N, P, Q lần lượt là trung điểm các đoạn thẳng AD, BD, AC, BC.

a) Chứng minh bốn điểm M, N, P, Q thẳng hàng.

b) Chứng minh tứ giác ABPN là hình thang cân.

c) Tìm một hệ thức liên hệ giữa AB và CD để ABPN là hình chữ nhật.

ĐS: c) DC = 3AB thì ABPN là hình chữ nhật.

Bài 5. Cho tam giác ABC. Gọi O là một điểm thuộc miền trong của tam giác, M, N, P, Q lần lượt là trung điểm của các đoạn thẳng OB, OC, AC, AB.

a) Chứng minh tứ giác MNPQ là hình bình hành.

b) Xác định vị trí của điểm O để tứ giác MNPQ là hình chữ nhật.

ĐS: b) O thuộc đường cao AH của AABC.

Bài 6. Cho tam giác ABC vuông cân tại C. Trên các cạnh AC, BC lấy lần lượt các điểm P, Q sao cho  . Từ điểm P vẽ PM song song với BC (M∈AB).

a) Chứng minh tứ giác PCQM là hình chữ nhật.

b) Gọi I là trung điểm của PQ. Chứng minh rằng khi P di chuyển trên cạnh AC, Q di chuyển trên cạnh BC thì điểm I di chuyển trên một đoạn thẳng cố định.

ĐS: b) I di chuyển trên đường trung bình của ∆ABC.

Bài 7. Cho hình chữ nhật ABCD. Nối C với một điểm E bất kỳ trên đường chéo BD. Trên tia đối của tia EC lấy điểm F sao cho EF = EC. Vẽ FH và FK lần lượt vuông góc với AB và AD. Chứng minh rằng:

a) Tứ giác AHFK là hình chữ nhật.

b) AF song song với BD và KH song song với AC.

c) Ba điểm E, H, K thẳng hàng.

Bài 8. Cho tam giác ABC và H là trực tâm. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC và CA; D, E, F lần lượt là trung điểm các đoạn HA, HB và HC.

a) Chứng minh rằng các tứ giác MNFD và MEFP là các hình chữ nhật.

b) Để các đoạn MD, ME và DP bằng nhau thì tam giác ABC phải là tam giác gì?

Dạng 2. Vận dụng kiến thức hình chữ nhật để giải toán

Bài 1. Tính độ dài trung tuyến ứng với cạnh huyền của một tam giác vuông có các cạnh góc vuông bằng 7cm và 24cm.

Bài 2. ĐS: AM = 12,5 (cm).

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Tia phân giác

Next post

Bộ 10 đề thi Toán lớp 10 học kì 2 năm 2021 tải nhiều nhất

Bài liên quan:

Bài giảng điện tử Đơn thức | Kết nối tri thức Giáo án PPT Toán 8

Bài giảng điện tử Toán 8 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 8

20 câu Trắc nghiệm Đơn thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8

Trọn bộ Trắc nghiệm Toán 8 Kết nối tri thức có đáp án

Giải sgk tất cả các môn lớp 8 Kết nối tri thức | Giải sgk các môn lớp 8 chương trình mới

20 Bài tập Đơn thức nhiều biến. Đa thức nhiều biến (sách mới) có đáp án – Toán 8

Giải VTH Toán 8 Kết nối tri thức | Vở thực hành Toán 8 Kết nối tri thức (hay, chi tiết)

Giải SBT Toán 8 Kết nối tri thức | Sách bài tập Toán 8 Kết nối tri thức (hay, chi tiết)

Leave a Comment Hủy

Mục lục

  1. Bài giảng điện tử Đơn thức | Kết nối tri thức Giáo án PPT Toán 8
  2. Bài giảng điện tử Toán 8 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 8
  3. 20 câu Trắc nghiệm Đơn thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  4. Trọn bộ Trắc nghiệm Toán 8 Kết nối tri thức có đáp án
  5. Giải sgk tất cả các môn lớp 8 Kết nối tri thức | Giải sgk các môn lớp 8 chương trình mới
  6. 20 Bài tập Đơn thức nhiều biến. Đa thức nhiều biến (sách mới) có đáp án – Toán 8
  7. Giải VTH Toán 8 Kết nối tri thức | Vở thực hành Toán 8 Kết nối tri thức (hay, chi tiết)
  8. Giải SBT Toán 8 Kết nối tri thức | Sách bài tập Toán 8 Kết nối tri thức (hay, chi tiết)
  9. Giải sgk Toán 8 (cả 3 bộ sách) | Giải bài tập Toán 8 (hay, chi tiết)
  10. Lý thuyết Đơn thức (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  11. Tổng hợp Lý thuyết Toán lớp 8 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 8 Kết nối tri thức hay, chi tiết
  12. Giáo án Toán 8 Bài 1 (Kết nối tri thức 2023): Đơn thức
  13. Giáo án Toán 8 Kết nối tri thức năm 2023 (mới nhất)
  14. Giải SGK Toán 8 Bài 1 (Kết nối tri thức): Đơn thức
  15. Giải sgk Toán 8 Kết nối tri thức | Giải bài tập Toán 8 Kết nối tri thức Tập 1, Tập 2 (hay, chi tiết)
  16. Bài giảng điện tử Đa thức | Kết nối tri thức Giáo án PPT Toán 8
  17. 20 câu Trắc nghiệm Đa thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  18. Lý thuyết Đa thức (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  19. Giáo án Toán 8 Bài 2 (Kết nối tri thức 2023): Đa thức
  20. Giải SGK Toán 8 Bài 2 (Kết nối tri thức): Đa thức
  21. Bài giảng điện tử Phép cộng và phép trừ đa thức | Kết nối tri thức Giáo án PPT Toán 8
  22. 20 câu Trắc nghiệm Phép cộng và phép trừ đa thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  23. 20 Bài tập Các phép tính với đa thức nhiều biến (sách mới) có đáp án – Toán 8
  24. Lý thuyết Phép cộng và phép trừ đa thức (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  25. Giáo án Toán 8 Bài 3 (Kết nối tri thức 2023): Phép cộng và phép trừ đa thức
  26. Giải SGK Toán 8 Bài 3 (Kết nối tri thức): Phép cộng và phép trừ đa thức
  27. Bài giảng điện tử Luyện tập chung trang 17 | Kết nối tri thức Giáo án PPT Toán 8
  28. Giải SGK Toán 8 (Kết nối tri thức) Luyện tập chung trang 17
  29. Bài giảng điện tử Phép nhân đa thức | Kết nối tri thức Giáo án PPT Toán 8
  30. 20 câu Trắc nghiệm Phép nhân đa thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  31. Lý thuyết Phép nhân đa thức (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  32. Giáo án Toán 8 Bài 4 (Kết nối tri thức 2023): Phép nhân đa thức
  33. Giải SGK Toán 8 Bài 4 (Kết nối tri thức): Phép nhân đa thức
  34. Bài giảng điện tử Phép chia đa thức cho đơn thức | Kết nối tri thức Giáo án PPT Toán 8
  35. 20 câu Trắc nghiệm Phép chia đa thức cho đơn thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  36. Lý thuyết Phép chia đa thức cho đơn thức (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  37. Giáo án Toán 8 Bài 5 (Kết nối tri thức 2023): Phép chia đa thức cho đơn thức
  38. Giải SGK Toán 8 Bài 5 (Kết nối tri thức): Phép chia đa thức
  39. Bài giảng điện tử Luyện tập chung trang 25 | Kết nối tri thức Giáo án PPT Toán 8
  40. Giáo án Toán 8 (Kết nối tri thức 2023) Luyện tập chung trang 25
  41. Giải SGK Toán 8 (Kết nối tri thức): Luyện tập chung trang 25
  42. Bài giảng điện tử Bài tập cuối chương 1 trang 27 | Kết nối tri thức Giáo án PPT Toán 8
  43. Sách bài tập Toán 8 (Kết nối tri thức) Bài tập cuối chương 1
  44. Lý thuyết Toán 8 Chương 1 (Kết nối tri thức 2023): Đa thức hay, chi tiết
  45. Giáo án Toán 8 (Kết nối tri thức 2023) Bài tập cuối chương 1
  46. Giải SGK Toán 8 (Kết nối tri thức): Bài tập cuối chương 1 trang 27
  47. Bài giảng điện tử Hiệu hai bình phương. Bình phương của một tổng hay một hiệu | Kết nối tri thức Giáo án PPT Toán 8
  48. 20 câu Trắc nghiệm Hiệu hai bình phương. Bình phương của một tổng hay một hiệu (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  49. Lý thuyết Hiệu hai bình phương. Bình phương của một tổng hay một hiệu (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  50. Giáo án Toán 8 Bài 6 (Kết nối tri thức 2023): Hiệu hai bình phương. Bình phương của một tổng hay một hiệu
  51. Giải SGK Toán 8 Bài 6 (Kết nối tri thức): Hiệu hai bình phương. Bình phương của một tổng hay một hiệu
  52. Bài giảng điện tử Lập phương của một tổng. Lập phương của một hiệu | Kết nối tri thức Giáo án PPT Toán 8

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán