Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Trắc nghiệm Toán 10

Chứng minh rằng đẳng thức sau đây đúng với mọi n∈ℕ*: 1+q+q2+q3+q4+…+qn−1=1−qn1−q (q≠1).

By admin 15/04/2023 0

Câu hỏi:

Chứng minh rằng đẳng thức sau đây đúng với mọi n∈ℕ*:
1+q+q2+q3+q4+…+qn−1=1−qn1−q (q≠1).

Trả lời:

Hướng dẫn giải
Bước 1. Với n = 1, ta có q1 – 1 = q0 = 1 = 1−q1−q=1−q11−q. Do đó đẳng thức đúng với n = 1.
Bước 2. Giả sử đẳng thức đúng với n = k ≥ 1, nghĩa là có:
1+q+q2+q3+q4+…+qk−1=1−qk1−q.
Ta cần chứng minh đẳng thức đúng với n = k + 1, nghĩa là cần chứng minh:1+q+q2+q3+q4+…+qk−1+q(k+1)−1=1−qk+11−q.
Sử dụng giả thiết quy nạp, ta có:
1+q+q2+q3+q4+…+qk−1+q(k+1)−1
=1−qk1−q+q(k+1)−1=1−qk1−q+qk=1−qk+qk(1−q)1−q=1−qk+qk−qk+11−q=1−qk+11−q.
Vậy đẳng thức đúng với n = k + 1.
Theo nguyên lí quy nạp toán học, đẳng thức đúng với mọi số tự nhiên n ≥ 1.

====== **** mời các bạn xem câu tiếp bên dưới **** =====

  1. Hãy quan sát các đẳng thức sau: 1 = 12 1 + 3 = 4 = 22 1 + 3 + 5 = 9 = 32 1 + 3 + 5 + 7 = 16 = 42 1 + 3 + 5 + 7 + 9 = 25 = 52 …… Có nhận xét gì về các số ở vế trái và ở vế phải của các đẳng thức trên? Từ đó hãy dự đoán công thức tính tổng của n số lẻ đầu tiên 1 + 3 + 5 + … + (2n –1).

    Câu hỏi:

    Hãy quan sát các đẳng thức sau:
    1 = 12
    1 + 3 = 4 = 22
    1 + 3 + 5 = 9 = 32
    1 + 3 + 5 + 7 = 16 = 42
    1 + 3 + 5 + 7 + 9 = 25 = 52
    ……
    Có nhận xét gì về các số ở vế trái và ở vế phải của các đẳng thức trên? Từ đó hãy dự đoán công thức tính tổng của n số lẻ đầu tiên 1 + 3 + 5 + … + (2n –1).

    Trả lời:

    Ta thấy vế trái của các đẳng thức lần lượt là tổng của 1, 2, 3, 4, 5, … số lẻ đầu tiên. Còn vế phải lần lượt là bình phương của 1, 2, 3, 4, 5,…
    Vậy ta có thể dự đoán 1 + 3 + 5 + … + (2n –1) = n2.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  2. Xét đa thức p(n) = n2 – n + 41. a) Hãy tính p(1), p(2), p(3), p(4), p(5) và chứng tỏ rằng các kết quả nhận được đều là số nguyên tố. b) Hãy đưa ra một dự đoán cho p(n) trong trường hợp tổng quát.

    Câu hỏi:

    Xét đa thức p(n) = n2 – n + 41.
    a) Hãy tính p(1), p(2), p(3), p(4), p(5) và chứng tỏ rằng các kết quả nhận được đều là số nguyên tố.
    b) Hãy đưa ra một dự đoán cho p(n) trong trường hợp tổng quát.

    Trả lời:

    a) p(1) = 41, p(2) = 43, p(3) = 47, p(4) = 53, p(5) = 61. Do đó p(1), p(2), p(3), p(4), p(5) đều là các số nguyên tố.
    b) Từ việc p(1), p(2), p(3), p(4), p(5) đều là các số nguyên tố ta có thể đưa ra dự đoán p(n) là số nguyên tố với mọi n > 1. Tuy nhiên, khẳng định này là một khẳng định sai. Mặc dù khẳng định này đúng với n = 1, 2,…, 40, nhưng nó lại sai khi n= 41. Thật vậy, với n= 41 ta có p(41) = 412 là hợp số (vì nó chia hết cho 41).

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  3. Chứng minh rằng với mọi số tự nhiên n ≥ 1, ta có 1+2+3+…+n=nn+12. 

    Câu hỏi:

    Chứng minh rằng với mọi số tự nhiên n ≥ 1, ta có
    1+2+3+…+n=nn+12. 

    Trả lời:

    Ta chứng minh bằng quy nạp theo n.
    Bước 1. Với n = 1 ta có 1 = 12.                                                                
    Như vậy khẳng định đúng cho trường hợp n = 1.
    Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có:                    
    1+2+3+…+k=kk+12.                                                          
    Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh:
    1+2+3+…+k+k+1=k+1k+1+12.
    Thật vậy, sử dụng giả thiết quy nạp ta có:
    1+2+3+…+k+k+1
    =kk+12+2k+12=k+1k+22=k+1k+1+12.
    Vậy khẳng định đúng với mọi số tự nhiên n ≥ 1.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  4. Chứng minh rằng với mọi số tự nhiên n ≥ 2, ta có đằng thức: an – bn = (a – b)(an – 1 + an – 2b + … + abn –2 + bn – 1).

    Câu hỏi:

    Chứng minh rằng với mọi số tự nhiên n ≥ 2, ta có đằng thức:
    an – bn = (a – b)(an – 1 + an – 2b + … + abn –2 + bn – 1).

    Trả lời:

    Bước 1. Khi n = 1, ta có: a1 – b1 = a – b.
    Vậy khẳng định đúng với n = 1.
    Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có:
    ak – bk = (a – b)(ak – 1 + ak – 2b + … + abk –2 + bk – 1)
    Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh:
    ak + 1 – bk + 1 = (a – b)[a(k + 1) – 1 + a(k + 1) – 2b + … + ab(k + 1) –2 + b(k + 1) – 1]
    Thật vậy, sử dụng giả thiết quy nạp ta có:
    ak + 1 – bk + 1
    = a . ak – b . bk
    = a . ak – a . bk + a . bk – b . bk
    = a . (ak – bk) + bk . (a – b)
    = a . (a – b)(ak – 1 + ak – 2b + … + abk –2 + bk – 1) + bk . (a – b)
    = (a – b) . a . (ak – 1 + ak – 2b + … + abk –2 + bk – 1) + (a – b) . bk
    = (a – b)(a . ak – 1 + a . ak – 2b + … + a . abk – 2 + a . bk – 1) + (a – b) . bk
    = (a – b)[a1 + (k – 1) + a1 + (k – 2)b + … + a2bk – 2 + a . bk – 1) + (a – b) . bk
    = (a – b)[a(k + 1) – 1 + a(k + 1) – 2b + … + a2b(k + 1) – 3 + ab(k + 1) –2] + (a – b) . b(k + 1) – 1
    = (a – b)[a(k + 1) – 1 + a(k + 1) – 2b + … + ab(k + 1) –2 + b(k + 1) – 1].
    Vậy khẳng định đúng với mọi số tự nhiên n ≥ 1.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  5. Lãi suất gửi tiết kiệm trong ngân hàng thường được tính theo thể thức lãi kép theo định kì. Theo thề thức này, nếu đến kì hạn người gửi không rút lãi ra thì tiền lãi được tính vào vốn của kì kế tiếp. Giả sử một người gửi số tiền A với lãi suất r không đổi trong mỗi kì. a) Tính tổng số tiền (cả vốn lẫn lãi) T1, T2, T3 mà người đó nhận được sau kì thứ 1, sau kì thứ 2 và sau kì thứ 3. b) Dự đoán công thức tính tổng số tiền (cả vốn lẫn lãi) Tn mà người đó thu được sau n kì. Hãy chứng minh công thức nhận được đó bằng quy nạp.

    Câu hỏi:

    Lãi suất gửi tiết kiệm trong ngân hàng thường được tính theo thể thức lãi kép theo định kì. Theo thề thức này, nếu đến kì hạn người gửi không rút lãi ra thì tiền lãi được tính vào vốn của kì kế tiếp. Giả sử một người gửi số tiền A với lãi suất r không đổi trong mỗi kì.
    a) Tính tổng số tiền (cả vốn lẫn lãi) T1, T2, T3 mà người đó nhận được sau kì thứ 1, sau kì thứ 2 và sau kì thứ 3.
    b) Dự đoán công thức tính tổng số tiền (cả vốn lẫn lãi) Tn mà người đó thu được sau n kì. Hãy chứng minh công thức nhận được đó bằng quy nạp.

    Trả lời:

    a)
    – Tổng số tiền (cả vốn lẫn lãi) T1 mà người đó nhận được sau kì thứ 1 là:
    T1 = A + Ar = A(1 + r).
    – Tổng số tiền (cả vốn lẫn lãi) T2 mà người đó nhận được sau kì thứ 2 là:
    T2 = A(1 + r) + A(1 + r)r = A(1 + r)(1 + r) = A(1 + r)2.
    – Tổng số tiền (cả vốn lẫn lãi) T3 mà người đó nhận được sau kì thứ 3 là:
    T3 = A(1 + r)2 + A(1 + r)2r = A(1 + r)3.
    b) Từ câu a) ta có thể dự đoán Tn = A(1 + r)n.
    Ta chứng minh bằng quy nạp theo n.
    Bước 1. Với n = 1 ta có T1 = A(1 + r) = A(1 + r)1.                                  
    Như vậy khẳng định đúng cho trường hợp n = 1.
    Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có: Tk = A(1 + r)k.
    Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh: Tk + 1 = A(1 + r)k + 1.
    Thật vậy,
    Tổng số tiền (cả vốn lẫn lãi) Tk + 1 mà người đó nhận được sau kì thứ (k + 1) là:
    Tk + 1 = A(1 + r)k + A(1 + r)k.r = A(1 + r)k(1 + r) = A(1 + r)k + 1.
    Vậy khẳng định đúng với mọi số tự nhiên n ≥ 1.
    Vậy Tn = A(1 + r)n với mọi số tự nhiên n ≥ 1.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

Tags : Tags Bài tập Phương pháp quy nạp toán học có đáp án
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Có tất cả bao nhiêu số nguyên m∈−2020;2020  để phương trình log23x2+3x+m+12×2−x+1=x2−5x+2−m có hai nghiệm phân biệt  thỏa mãn ?

Next post

Chu vi một đa giác là 158 cm, các cạnh của đa giác này lập thành một cấp số cộng với công sai d=3cm.  Biết cạnh lớn nhất có độ dài là 44 cm, độ dài cạnh nhỏ nhất của đa giác là

Bài liên quan:

Tìm giá trị nhỏ nhất của biểu thức F(x; y) = – 2x + y trên miền nghiệm của hệ bất phương trình x – y ≥2x+y ≤4x-5y ≤2.

Cho tam giác ABC đều có cạnh bằng a, gọi H là trung điểm của cạnh BC. Độ dài của vectơ 2(→HA-→HC)bằng

Cho tam giác đều ABC nội tiếp đường tròn tâm O bán kính bằng 1. Gọi M là điểm nằm trên đường tròn (O), độ dài vectơ →MA+→MB+→MC bằng

Cho hình thang MNPQ, MN // PQ, MN = 2PQ. Phát biểu nào dưới đây là đúng?

Phát biểu nào sau đây là sai?

Cho hình chữ nhật ABCD tâm O. Gọi M, N lần lượt là trung điểm của các cạnh AB, AD. Chọn khẳng định đúng trong các khẳng định sau:

Cho hình bình hành ABCD. Mệnh đề nào sau đây đúng?

Cho tam giác đều ABC có AB=a, M là trung điểm của BC. Khi đó →MA+→AC bằng

Leave a Comment Hủy

Mục lục

  1. Tìm giá trị nhỏ nhất của biểu thức F(x; y) = – 2x + y trên miền nghiệm của hệ bất phương trình x – y ≥2x+y ≤4x-5y ≤2.
  2. Cho tam giác ABC đều có cạnh bằng a, gọi H là trung điểm của cạnh BC. Độ dài của vectơ 2(→HA-→HC)bằng
  3. Cho tam giác đều ABC nội tiếp đường tròn tâm O bán kính bằng 1. Gọi M là điểm nằm trên đường tròn (O), độ dài vectơ →MA+→MB+→MC bằng
  4. Cho hình thang MNPQ, MN // PQ, MN = 2PQ. Phát biểu nào dưới đây là đúng?
  5. Phát biểu nào sau đây là sai?
  6. Cho hình chữ nhật ABCD tâm O. Gọi M, N lần lượt là trung điểm của các cạnh AB, AD. Chọn khẳng định đúng trong các khẳng định sau:
  7. Cho hình bình hành ABCD. Mệnh đề nào sau đây đúng?
  8. Cho tam giác đều ABC có AB=a, M là trung điểm của BC. Khi đó →MA+→AC bằng
  9. Cho hình bình hành ABCD với điểm K thỏa mãn →KA+→KC=→AB thì
  10. Cho hình chữ nhật ABCD. Hãy chọn khẳng định đúng.
  11. Đẳng thức nào sau đây, mô tả đúng hình vẽ bên?
  12. Một người đứng ở vị trí A trên nóc một ngôi nhà cao 8m đang quan sát một cây cao cách ngôi nhà 25m và đo được BAC =43°44′. Chiều cao của cây gần với kết quả nào nhất sau đây?
  13. Cho tam giác ABC có BC = 50 cm, B = 65o C = 45o Tính chu vi của tam giác ABC (làm tròn kết quả đến hàng phần mười theo đơn vị xăng – ti – mét):
  14. Cho tam giác ABC, có các cạnh AB = c, AC = b, BC = a. Định lí sin được phát biểu:
  15. Trong các công thức dưới đây, công thức nào sai về cách tính diện tích tam giác ABC? Biết AB = c, AC = b, BC = a, ha, hb, hc lần lượt là các đường cao kẻ từ đỉnh A, B, C, r là bán kính đường tròn nội tiếp, R là bán kính đường tròn ngoại tiếp tam giác ABC.
  16. Cho điểm M(x0; y0) nằm trên đường tròn đơn vị thỏa mãn xOM = α. Khi đó phát biểu nào dưới đây là sai?
  17. Cho tam giác ABC, ta có các đẳng thức: (I) sinA2 = sinB+C2; (II) tanA2 = cotB+C2; (III) sinA = sin(B + C). Có bao nhiêu đẳng thức đúng?
  18. Tính giá trị biểu thức: A = cos 0° + cos 40° + cos 120° + cos 140°
  19. Cho sin35° ≈ 0,57. Giá trị của sin145° gần với giá trị nào nhất sau đây:
  20. Phần mặt phẳng không bị gạch chéo trong hình vẽ bên (kể cả biên) là biểu diễn hình học tập nghiệm của hệ bất phương trình nào dưới đây?
  21. Bất phương trình nào sau đây không là bất phương trình bậc nhất một ẩn?
  22. Cặp số (x; y) nào sau đây là nghiệm của bất phương trình 5x – 3y ≤ 2?
  23. Lớp 10A1 có 6 học sinh giỏi Toán, 4 học sinh giỏi Lý, 5 học sinh giỏi Hóa, 2 học sinh giỏi Toán và Lý, 3 học sinh giỏi Toán và Hóa, 2 học sinh giỏi Lý và Hóa, 1 học sinh giỏi cả 3 môn Toán, Lý, Hóa. Số học sinh giỏi ít nhất một môn (Toán, Lý, Hóa) của lớp 10A1 là:
  24. Hình vẽ sau đây (phần không bị gạch) là biểu diễn của tập hợp nào?
  25. Cho hai tập hợp (1; 3) và [2; 4]. Giao của hai tập hợp đã cho là
  26. Số phần tử của tập hợp A = {k2 + 1| k ∈ ℤ, |k| ≤ 2} bằng
  27. Cho A = {0; 1; 2; 3; 4} và B = {2; 3; 4; 5; 6}. Tập hợp (A \ B) ∪ (B \ A) bằng?
  28. Mệnh đề phủ định của mệnh đề “Phương trình ax2 + bx + c = 0 (a ≠ 0) vô nghiệm” là:
  29. Cho mệnh đề chứa biến P(n): “n2 chia hết cho 4 ” với n là số nguyên. Chọn mệnh đề đúng trong các mệnh đề sau:
  30. Cho tập hợp A và a là một phần tử của tập hợp A. Trong các mệnh đề sau, mệnh đề nào sai?
  31. Lớp 10A có 36 học sinh, trong đó mỗi học sinh đều biết chơi ít nhất một trong hai môn thể thao đá cầu hoặc cầu lông. Biết rằng lớp 10A có 25 học sinh biết chơi đá cầu, có 20 học sinh biết chơi cầu lông. Hỏi lớp 10A có bao nhiêu học sinh biết chơi cả hai môn đá cầu và cầu lông?
  32. Anh Trung có kế hoạch đầu tư 400 triệu đồng vào hai khoản X và Y. Để đạt được lợi nhuận thì khoản X phải đầu tư ít nhất 100 triệu đồng và số tiền đầu tư cho khoản Y không nhỏ hơn số tiền cho khoản X. Viết hệ bất phương trình bậc nhất hai ẩn để mô tả hai khoản đầu tư đó và biểu diễn miền nghiệm của hệ bất phương trình vừa tìm được.
  33. Để lắp đường dây điện cao thế từ vị trí A đến vị trí B, do phải tránh một ngọn núi nên người ta phải nối đường dây từ vị trí A đến vị trí C dài 20 km, sau đó nối đường dây từ vị trí C đến vị trí B dài 12km. Góc tạo bởi dây AC và CB là 75°. Tính chiều dài tăng thêm vì không thể nối trực tiếp từ A đến B.
  34. Giải tam giác ABC biết ABC có b = 14, c = 25 và A = 120°.
  35. Miền nghiệm của bất phương trình 2x – 3y > 5 là nửa mặt phẳng (không kể đường thẳng d: 2x – 3y = 5) không chứa điểm có tọa độ nào sau đây?
  36. Cho tam giác ABC có AB = 6,5 cm, AC = 8,5 cm, A=185o. Tính độ dài cạnh BC (làm tròn kết quả đến hàng phần mười theo đơn vị tương ứng).
  37. Giá trị biểu thức T = sin225° + sin275° + sin2115° + sin2165° là:
  38. Cho 0° < α < 180°. Chọn câu trả lời đúng.
  39. Cặp số nào sau đây không là nghiệm của hệ bất phương trình x + y ≤ 22x – 3y &gt; -2
  40. Cặp số nào sau đây là nghiệm của bất phương trình – 3x + 5y ≤ 6.
  41. Cho hình chữ nhật ABCD có AB = 3a, BC = 4a. Độ dài của vectơ →AB+→AD bằng
  42. Hàm số f(x) = x2 đồng biến trên khoảng nào dưới đây ?
  43. Cho hai tập hợp A = [– 2; 3), B = [1; 5]. Khi đó A ∩ B là tập hợp nào dưới đây ?
  44. Cho hai tập hợp A = {1; 2; 3; 4; 5} và B = {1; 3; 5; 7}. Số phần tử của tập hợp A\B là
  45. Cho I là trung điểm của đoạn thẳng AB và M là một điểm tùy ý. Mệnh đề nào dưới đây đúng?
  46. Vectơ có điểm đầu là A và điểm cuối là B được kí hiệu là:
  47. Cho các vectơ →u; →v;→x;→y như trong hình: Mệnh đề nào dưới đây là đúng?
  48. Trong mặt phẳng Oxy đồ thị của hàm số y = x2 – 2x + 3 có trục đối xứng là đường thẳng nào dưới đây ?
  49. Trong mặt phẳng Oxy, biết điểm M(2; y0) thuộc đồ thị của hàm số y = 2x – 3. Giá trị của y0 bằng:
  50. Trong các mệnh đề dưới đây, mệnh đề nào đúng ?
  51. Hàm số nào dưới đây có đồ thị là đường thẳng như trong hình bên ?
  52. Cho hàm số f(x) = x3 – 2. Giá trị f(1) bằng bao nhiêu?

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán