Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Trắc nghiệm Toán 10

Một ô tô có khối lượng 2,5 tấn chạy từ chân lên đỉnh một con dốc thẳng. Tính công của trọng lực tác động lên xe, biết dốc dài 50 m và nghiêng 15° so với phương nằm ngang (trong tính toán, lấy gia tốc trọng trường bằng 10 m/s²).

By admin 08/05/2023 0

Câu hỏi:

Một ô tô có khối lượng 2,5 tấn chạy từ chân lên đỉnh một con dốc thẳng. Tính công của trọng lực tác động lên xe, biết dốc dài 50 m và nghiêng 15° so với phương nằm ngang (trong tính toán, lấy gia tốc trọng trường bằng 10 m/s²).

Trả lời:

Lời giảiĐổi 2,5 tấn = 2 500 kg.Trọng lực của ô tô có độ lớn bằng \(\left| {\overrightarrow P } \right|\) = mg = 2 500 . 10 = 25 000 (N)Trọng lực \(\overrightarrow P \) của ô tô hợp với hướng chuyển dời \(\overrightarrow {MN} \) một góc là:α = 90° + 15° = 105°.Trọng lực \(\overrightarrow P \) được phân tích thành hai thành phần \(\overrightarrow {{P_1}} \) và \(\overrightarrow {{P_2}} \) nên ta có: \(\overrightarrow P = \overrightarrow {{P_1}} + \overrightarrow {{P_2}} \)(\(\overrightarrow {{P_1}} \) có phương vuông góc với mặt dốc, \(\overrightarrow {{P_2}} \) có phương song song với mặt dốc)Ta thấy \(\overrightarrow {{P_1}} \) không có tác dụng với chuyển dời \(\overrightarrow {MN} \) của xe và \(\overrightarrow {{P_2}} \) ngược hướng với \(\overrightarrow {MN} \).Do đó công của trọng lực tác động lên xe bằng:A = \(\overrightarrow P .\overrightarrow {MN} = \left| {\overrightarrow P } \right|.\left| {\overrightarrow {MN} } \right|.cos\left( {\overrightarrow P ,\overrightarrow {MN} } \right)\)= 25 000 . 50 . cos105°≈ –323 524 (J)Vậy công của trọng lực tác động lên xe bằng khoảng –323 524 J.

====== **** mời các bạn xem câu tiếp bên dưới **** =====

  1. Cho hình bình hành ABCD tâm O. Xét các vectơ có hai điểm mút lấy từ các điểm A, B, C, D và O. Số các vectơ khác vectơ – không và cùng phương với \(\overrightarrow {AC} \) là:

    Câu hỏi:

    Cho hình bình hành ABCD tâm O. Xét các vectơ có hai điểm mút lấy từ các điểm A, B, C, D và O. Số các vectơ khác vectơ – không và cùng phương với \(\overrightarrow {AC} \) là:

    A. 6;

    Đáp án chính xác

    B. 3;

    C. 4;

    D. 2.

    Trả lời:

    Đáp án đúng là: A
    Cho hình bình hành ABCD tâm O. Xét các vectơ có hai điểm mút lấy từ các điểm A, B, C, D và O. Số các vectơ khác vectơ - không và cùng phương với vecto AC là: (ảnh 1)
    Các vectơ khác vectơ – không và cùng phương với \(\overrightarrow {AC} \) là: \(\overrightarrow {AC} ,\overrightarrow {CA} ,\overrightarrow {AO} ,\overrightarrow {OA} ,\overrightarrow {OC} ,\overrightarrow {CO} .\)
    Vậy có 6 vectơ khác vectơ – không và cùng phương với \(\overrightarrow {AC} .\)
    Vậy ta chọn phương án A.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  2. Cho đoạn thẳng AC và B là một điểm nằm giữa A, C. Trong các khẳng định sau, khẳng định nào là một khẳng định đúng?

    Câu hỏi:

    Cho đoạn thẳng AC và B là một điểm nằm giữa A, C. Trong các khẳng định sau, khẳng định nào là một khẳng định đúng?

    A. Hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CB} \) cùng hướng;

    B. Hai vectơ \(\overrightarrow {CA} \) và \(\overrightarrow {BC} \) cùng hướng;

    C. Hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \) cùng hướng;

    Đáp án chính xác

    D. Hai vectơ \(\overrightarrow {AC} \) và \(\overrightarrow {BA} \) cùng hướng.

    Trả lời:

    Đáp án đúng là: CVì B nằm giữa A và C nên ta có:• \(\overrightarrow {AB} \) và \(\overrightarrow {CB} \) ngược hướng. Do đó phương án A sai.• \(\overrightarrow {CA} \) và \(\overrightarrow {BC} \) ngược hướng. Do đó phương án B sai.• \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \) cùng hướng. Do đó phương án C đúng.• \(\overrightarrow {AC} \) và \(\overrightarrow {BA} \) ngược hướng. Do đó phương án D sai.Vậy ta chọn phương án C.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  3. Cho hình bình hành ABCD tâm O. Gọi K, L, M, N tương ứng là trung điểm các cạnh AB, BC, CD, DA. Trong các vectơ có đầu mút lấy từ các điểm A, B, C, D, K, L, M, O, có bao nhiêu vectơ bằng vectơ \(\overrightarrow {AK} ?\)

    Câu hỏi:

    Cho hình bình hành ABCD tâm O. Gọi K, L, M, N tương ứng là trung điểm các cạnh AB, BC, CD, DA. Trong các vectơ có đầu mút lấy từ các điểm A, B, C, D, K, L, M, O, có bao nhiêu vectơ bằng vectơ \(\overrightarrow {AK} ?\)

    A. 2;

    B. 6;

    C. 4;

    Đáp án chính xác

    D. 8.

    Trả lời:

    Đáp án đúng là: C
    Cho hình bình hành ABCD tâm O. Gọi K, L, M, N tương ứng là trung điểm các cạnh AB, BC, CD, DA. Trong các vectơ có đầu mút lấy từ các điểm A, B, C, D, K, L, M, O, có bao nhiêu vectơ bằng vectơ (ảnh 1)
    Vì ABCD là hình bình hành nên AB // CD và AB = CD.
    Lại có K, L, M, N tương ứng là trung điểm các cạnh AB, BC, CD, DA
    Nên AK = KB = DM = MC và NL // AB // CD
    Do đó ABLN là hình bình hành (do AB // NL và AN // BL)
    Suy ra AB = NL = CD
    Mà O là tâm hình bình hành nên O là trung điểm của AC và BD
    Do đó đường trung bình NL đi qua O
    Và NO = OL = \(\frac{1}{2}NL = \frac{1}{2}AB = \frac{1}{2}CD\)
    Suy ra AK = KB = NO = OL = DM = MC.
    Khi đó các vectơ bằng vectơ \(\overrightarrow {AK} \) là: \(\overrightarrow {KB} ,\overrightarrow {OL} ,\overrightarrow {DM} ,\overrightarrow {MC} .\)
    Vậy có 4 vectơ bằng vectơ \(\overrightarrow {AK} .\)
    Ta chọn phương án C.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  4. Cho hình thoi ABCD có độ dài các cạnh bằng 1 và \(\widehat {DAB} = 120^\circ .\) Khẳng định nào sau đây là đúng?

    Câu hỏi:

    Cho hình thoi ABCD có độ dài các cạnh bằng 1 và \(\widehat {DAB} = 120^\circ .\) Khẳng định nào sau đây là đúng?

    A. \(\overrightarrow {AB} = \overrightarrow {CD} ;\)

    B. \(\overrightarrow {BD} = \overrightarrow {AC} ;\)

    C. \(\left| {\overrightarrow {BD} } \right| = 1;\)

    D. \(\left| {\overrightarrow {{\rm{AC}}} } \right| = 1.\)

    Đáp án chính xác

    Trả lời:

    Đáp án đúng là: D
    Cho hình thoi ABCD có độ dài các cạnh bằng 1 và góc DAB = 120^0. Khẳng định nào sau đây là đúng? (ảnh 1)
    • Xét phương án A:
    Vì ABCD là hình thoi nên AB // CD suy ra \(\overrightarrow {AB} = \overrightarrow {DC} .\)
    Do đó phương án A là sai.
    • Xét phương án B:
    Vì ABCD là hình thoi nên hai đường chéo AC và BD vuông góc với nhau.
    Khi đó \(\overrightarrow {BD} \bot \overrightarrow {AC} \) nên \(\overrightarrow {BD} \ne \overrightarrow {AC} .\)
    Do đó phương án B là sai.
    • Xét phương án C:
    Vì ABCD là hình thoi có cạnh bằng 1 nên AD = AB = 1.
    Xét ABD có AB = AD = 1 và \(\widehat {DAB} = 120^\circ ,\) áp dụng định lí cosin ta có:
    BD2 = AD2 + AB2 – 2.AD.AB.cos\(\widehat {DAB}\)
    BD2 = 12 + 12 – 2.1.1.cos120°
    BD2 = 3
    BD = \(\sqrt 3 \)
    Khi đó \(\left| {\overrightarrow {BD} } \right| = BD = \sqrt 3 .\)
    Do đó phương án C là sai.
    • Xét phương án D:
    Vì ABCD là hình thoi có cạnh bằng 1 nên AD = CD = 1 .
    Mặt khác \(\widehat {DAB} = 120^\circ \) nên \(\widehat {ADC} = 180^\circ – \widehat {DAB} = 180^\circ – 120^\circ = 60^\circ \)
    Tam giác ADC có AD = DC nên là tam giác cân lại có \(\widehat {ADC} = 60^\circ \)
    Suy ra ADC là tam giác đều
    AC = AD = CD = 1.
    Khi đó \(\left| {\overrightarrow {AC} } \right| = AC = 1.\)
    Do đó phương án D là đúng.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  5. Cho tam giác ABC đều, trọng tâm G, có độ dài các cạnh bằng 3. Độ dài của vectơ \(\overrightarrow {AG} \) bằng

    Câu hỏi:

    Cho tam giác ABC đều, trọng tâm G, có độ dài các cạnh bằng 3. Độ dài của vectơ \(\overrightarrow {AG} \) bằng

    A. \(\sqrt 3 ;\)

    Đáp án chính xác

    B. \(\frac{{3\sqrt 3 }}{2};\)

    C. \(\frac{{\sqrt 3 }}{2};\)

    D. \(2\sqrt 3 .\)

    Trả lời:

    Đáp án đúng là: A
    Cho tam giác ABC đều, trọng tâm G, có độ dài các cạnh bằng 3. Độ dài của vectơ AG bằng (ảnh 1)
    Tam giác ABC đều có cạnh bằng 3 nên AB = AC = 3 và \(\widehat {BAC} = 60^\circ .\)
    Gọi M là trung điểm của BC.
    Khi đó ta có: \(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AM} \)
    \( \Rightarrow {\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)^2} = {\left( {2\overrightarrow {AM} } \right)^2}\)
    \( \Rightarrow A{B^2} + 2.\overrightarrow {AB} .\overrightarrow {AC} + A{C^2} = 4A{M^2}\)
    \( \Rightarrow A{B^2} + 2.AB.AC.c{\rm{os}}\widehat {BAC} + A{C^2} = 4A{M^2}\)
    32 + 2.3.3.cos60° + 32 = 4.AM2
    4.AM2 = 27
    AM2 = \(\frac{{27}}{4}\)
    AM = \(\sqrt {\frac{{27}}{4}} = \frac{{3\sqrt 3 }}{2}\)
    Vì G là trọng tâm tam giác ABC nên AG = \(\frac{2}{3}\)AM
    AG = \(\frac{2}{3}.\frac{{3\sqrt 3 }}{2} = \sqrt 3 .\)
    Khi đó \(\left| {\overrightarrow {AG} } \right| = AG = \sqrt 3 .\)
    Vậy ta chọn phương án A.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

Tags : Tags Giải SBT Toán 10 Bài tập cuối chương 4 có đáp án
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Điền số thích hợp vào chỗ chấm: + Số 23 gồm … chục và … đơn vị. + Số … gồm 1 chục và 6 đơn vị. + Số … là số liền trước của số 34. + Số … là số liền sau của số 69.

Next post

Cho hình vẽ bên. Mệnh đề nào sau đây là sai?

Bài liên quan:

Tìm giá trị nhỏ nhất của biểu thức F(x; y) = – 2x + y trên miền nghiệm của hệ bất phương trình x – y ≥2x+y ≤4x-5y ≤2.

Cho tam giác ABC đều có cạnh bằng a, gọi H là trung điểm của cạnh BC. Độ dài của vectơ 2(→HA-→HC)bằng

Cho tam giác đều ABC nội tiếp đường tròn tâm O bán kính bằng 1. Gọi M là điểm nằm trên đường tròn (O), độ dài vectơ →MA+→MB+→MC bằng

Cho hình thang MNPQ, MN // PQ, MN = 2PQ. Phát biểu nào dưới đây là đúng?

Phát biểu nào sau đây là sai?

Cho hình chữ nhật ABCD tâm O. Gọi M, N lần lượt là trung điểm của các cạnh AB, AD. Chọn khẳng định đúng trong các khẳng định sau:

Cho hình bình hành ABCD. Mệnh đề nào sau đây đúng?

Cho tam giác đều ABC có AB=a, M là trung điểm của BC. Khi đó →MA+→AC bằng

Leave a Comment Hủy

Mục lục

  1. Tìm giá trị nhỏ nhất của biểu thức F(x; y) = – 2x + y trên miền nghiệm của hệ bất phương trình x – y ≥2x+y ≤4x-5y ≤2.
  2. Cho tam giác ABC đều có cạnh bằng a, gọi H là trung điểm của cạnh BC. Độ dài của vectơ 2(→HA-→HC)bằng
  3. Cho tam giác đều ABC nội tiếp đường tròn tâm O bán kính bằng 1. Gọi M là điểm nằm trên đường tròn (O), độ dài vectơ →MA+→MB+→MC bằng
  4. Cho hình thang MNPQ, MN // PQ, MN = 2PQ. Phát biểu nào dưới đây là đúng?
  5. Phát biểu nào sau đây là sai?
  6. Cho hình chữ nhật ABCD tâm O. Gọi M, N lần lượt là trung điểm của các cạnh AB, AD. Chọn khẳng định đúng trong các khẳng định sau:
  7. Cho hình bình hành ABCD. Mệnh đề nào sau đây đúng?
  8. Cho tam giác đều ABC có AB=a, M là trung điểm của BC. Khi đó →MA+→AC bằng
  9. Cho hình bình hành ABCD với điểm K thỏa mãn →KA+→KC=→AB thì
  10. Cho hình chữ nhật ABCD. Hãy chọn khẳng định đúng.
  11. Đẳng thức nào sau đây, mô tả đúng hình vẽ bên?
  12. Một người đứng ở vị trí A trên nóc một ngôi nhà cao 8m đang quan sát một cây cao cách ngôi nhà 25m và đo được BAC =43°44′. Chiều cao của cây gần với kết quả nào nhất sau đây?
  13. Cho tam giác ABC có BC = 50 cm, B = 65o C = 45o Tính chu vi của tam giác ABC (làm tròn kết quả đến hàng phần mười theo đơn vị xăng – ti – mét):
  14. Cho tam giác ABC, có các cạnh AB = c, AC = b, BC = a. Định lí sin được phát biểu:
  15. Trong các công thức dưới đây, công thức nào sai về cách tính diện tích tam giác ABC? Biết AB = c, AC = b, BC = a, ha, hb, hc lần lượt là các đường cao kẻ từ đỉnh A, B, C, r là bán kính đường tròn nội tiếp, R là bán kính đường tròn ngoại tiếp tam giác ABC.
  16. Cho điểm M(x0; y0) nằm trên đường tròn đơn vị thỏa mãn xOM = α. Khi đó phát biểu nào dưới đây là sai?
  17. Cho tam giác ABC, ta có các đẳng thức: (I) sinA2 = sinB+C2; (II) tanA2 = cotB+C2; (III) sinA = sin(B + C). Có bao nhiêu đẳng thức đúng?
  18. Tính giá trị biểu thức: A = cos 0° + cos 40° + cos 120° + cos 140°
  19. Cho sin35° ≈ 0,57. Giá trị của sin145° gần với giá trị nào nhất sau đây:
  20. Phần mặt phẳng không bị gạch chéo trong hình vẽ bên (kể cả biên) là biểu diễn hình học tập nghiệm của hệ bất phương trình nào dưới đây?
  21. Bất phương trình nào sau đây không là bất phương trình bậc nhất một ẩn?
  22. Cặp số (x; y) nào sau đây là nghiệm của bất phương trình 5x – 3y ≤ 2?
  23. Lớp 10A1 có 6 học sinh giỏi Toán, 4 học sinh giỏi Lý, 5 học sinh giỏi Hóa, 2 học sinh giỏi Toán và Lý, 3 học sinh giỏi Toán và Hóa, 2 học sinh giỏi Lý và Hóa, 1 học sinh giỏi cả 3 môn Toán, Lý, Hóa. Số học sinh giỏi ít nhất một môn (Toán, Lý, Hóa) của lớp 10A1 là:
  24. Hình vẽ sau đây (phần không bị gạch) là biểu diễn của tập hợp nào?
  25. Cho hai tập hợp (1; 3) và [2; 4]. Giao của hai tập hợp đã cho là
  26. Số phần tử của tập hợp A = {k2 + 1| k ∈ ℤ, |k| ≤ 2} bằng
  27. Cho A = {0; 1; 2; 3; 4} và B = {2; 3; 4; 5; 6}. Tập hợp (A \ B) ∪ (B \ A) bằng?
  28. Mệnh đề phủ định của mệnh đề “Phương trình ax2 + bx + c = 0 (a ≠ 0) vô nghiệm” là:
  29. Cho mệnh đề chứa biến P(n): “n2 chia hết cho 4 ” với n là số nguyên. Chọn mệnh đề đúng trong các mệnh đề sau:
  30. Cho tập hợp A và a là một phần tử của tập hợp A. Trong các mệnh đề sau, mệnh đề nào sai?
  31. Lớp 10A có 36 học sinh, trong đó mỗi học sinh đều biết chơi ít nhất một trong hai môn thể thao đá cầu hoặc cầu lông. Biết rằng lớp 10A có 25 học sinh biết chơi đá cầu, có 20 học sinh biết chơi cầu lông. Hỏi lớp 10A có bao nhiêu học sinh biết chơi cả hai môn đá cầu và cầu lông?
  32. Anh Trung có kế hoạch đầu tư 400 triệu đồng vào hai khoản X và Y. Để đạt được lợi nhuận thì khoản X phải đầu tư ít nhất 100 triệu đồng và số tiền đầu tư cho khoản Y không nhỏ hơn số tiền cho khoản X. Viết hệ bất phương trình bậc nhất hai ẩn để mô tả hai khoản đầu tư đó và biểu diễn miền nghiệm của hệ bất phương trình vừa tìm được.
  33. Để lắp đường dây điện cao thế từ vị trí A đến vị trí B, do phải tránh một ngọn núi nên người ta phải nối đường dây từ vị trí A đến vị trí C dài 20 km, sau đó nối đường dây từ vị trí C đến vị trí B dài 12km. Góc tạo bởi dây AC và CB là 75°. Tính chiều dài tăng thêm vì không thể nối trực tiếp từ A đến B.
  34. Giải tam giác ABC biết ABC có b = 14, c = 25 và A = 120°.
  35. Miền nghiệm của bất phương trình 2x – 3y > 5 là nửa mặt phẳng (không kể đường thẳng d: 2x – 3y = 5) không chứa điểm có tọa độ nào sau đây?
  36. Cho tam giác ABC có AB = 6,5 cm, AC = 8,5 cm, A=185o. Tính độ dài cạnh BC (làm tròn kết quả đến hàng phần mười theo đơn vị tương ứng).
  37. Giá trị biểu thức T = sin225° + sin275° + sin2115° + sin2165° là:
  38. Cho 0° < α < 180°. Chọn câu trả lời đúng.
  39. Cặp số nào sau đây không là nghiệm của hệ bất phương trình x + y ≤ 22x – 3y &gt; -2
  40. Cặp số nào sau đây là nghiệm của bất phương trình – 3x + 5y ≤ 6.
  41. Cho hình chữ nhật ABCD có AB = 3a, BC = 4a. Độ dài của vectơ →AB+→AD bằng
  42. Hàm số f(x) = x2 đồng biến trên khoảng nào dưới đây ?
  43. Cho hai tập hợp A = [– 2; 3), B = [1; 5]. Khi đó A ∩ B là tập hợp nào dưới đây ?
  44. Cho hai tập hợp A = {1; 2; 3; 4; 5} và B = {1; 3; 5; 7}. Số phần tử của tập hợp A\B là
  45. Cho I là trung điểm của đoạn thẳng AB và M là một điểm tùy ý. Mệnh đề nào dưới đây đúng?
  46. Vectơ có điểm đầu là A và điểm cuối là B được kí hiệu là:
  47. Cho các vectơ →u; →v;→x;→y như trong hình: Mệnh đề nào dưới đây là đúng?
  48. Trong mặt phẳng Oxy đồ thị của hàm số y = x2 – 2x + 3 có trục đối xứng là đường thẳng nào dưới đây ?
  49. Trong mặt phẳng Oxy, biết điểm M(2; y0) thuộc đồ thị của hàm số y = 2x – 3. Giá trị của y0 bằng:
  50. Trong các mệnh đề dưới đây, mệnh đề nào đúng ?
  51. Hàm số nào dưới đây có đồ thị là đường thẳng như trong hình bên ?
  52. Cho hàm số f(x) = x3 – 2. Giá trị f(1) bằng bao nhiêu?

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán