Câu hỏi:
Xếp ngẫu nhiên 10 học sinh gồm 2 học sinh lớp 12A, 3 học sinh lớp 12B và 5 học sinh lớp 12C thành một hàng ngang. Xác suất để trong 10 học sinh trên không có 2 học sinh cùng lớp đứng cạnh nhau bằng
A.\(\frac{1}{{42}}\)
B.\(\frac{{11}}{{630}}\)
Đáp án chính xác
C.\(\frac{1}{{126}}\)
D. \(\frac{1}{{105}}\)
Trả lời:
Số cách xếp 10 học sinh vào 10 vị trí: \(n\left( \Omega \right) = 10!\) cách.
Gọi \(A\) là biến cố: “Trong 10 học sinh trên không có 2 học sinh cùng lớp đứng cạnh nhau”.
Sắp xếp 5 học sinh lớp 12C vào 5 vị trí, có 5! cách.
Ứng mỗi cách xếp 5 học sinh lớp 12C sẽ có 6 khoảng trống gồm 4 vị trí ở giữa và hai vị trí hai đầu để xếp các học sinh còn lại
C1
C2
C3
C4
C5
TH1: Xếp 3 học sinh lớp 12B vào 4 vị trí trống ở giữa (không xếp vào hai đầu), có \(A_4^3\) cách.
Ứng với mỗi cách xếp đó, chọn lấy 1 trong 2 học sinh lớp 12A xếp vào vị trí trống thứ 4 (để hai học sinh lớp 12C không được ngồi cạnh nhau), có 2 cách.
Học sinh lớp 12A còn lại có 8 vị trí để xếp, có 8 cách.
Theo quy tắc nhân, ta có \(5!.A_4^3.2.8\) cách.
TH2: Xếp 2 trong 3 học sinh lớp 12B vào 4 vị trí trống ở giữa và học sinh còn lại xếp vào hai đầu, có \(C_3^1.2.A_4^2\) cách.
Ứng với mỗi cách xếp đó sẽ còn 2 vị trí trống ở giữa, xếp 2 học sinh lớp 12A vào vị trí đó, có 2 cách.
Theo quy tắc nhân, ta có \(5!.C_3^1.2.A_4^2.2\) cách.
Do đó số cách xếp không có học sinh cùng lớp ngồi cạnh nhau là:
\(n\left( A \right) = 5!.2.8 + 5!.C_3^1.2.A_4^2.2 = 63360\) cách.
Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{63360}}{{10!}} = \frac{{11}}{{630}}.\)
Đáp án B.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong các phương trình dưới đây, phương trình nào có tập nghiệm là: \(x = \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}.\)
Câu hỏi:
Trong các phương trình dưới đây, phương trình nào có tập nghiệm là: \(x = \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}.\)
A.\(\sin x = 1\)
B.\(\cos x = 0\)
Đáp án chính xác
C.\(\sin x = 0\)
D. \(\cos x = 1\)
Trả lời:
Ta có: \(\sin x = 1 \Leftrightarrow x = \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}.\)
\(\cos x = 0 \Leftrightarrow x = \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}.\)
\(\sin x = 0 \Leftrightarrow x = k\pi ,k \in \mathbb{Z}.\)
\(\cos x = 1 \Leftrightarrow x = k2\pi ,k \in \mathbb{Z}.\)
Đáp án B.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Đồ thị hàm số \(y = \frac{{x – 2}}{{x + 4}}\) cắt trục tung tại điểm có tung độ bằng
Câu hỏi:
Đồ thị hàm số \(y = \frac{{x – 2}}{{x + 4}}\) cắt trục tung tại điểm có tung độ bằng
A.0.
B.2.
C.\(\frac{1}{2}.\)
D. \( – \frac{1}{2}.\)
Đáp án chính xác
Trả lời:
Giao điểm của đồ thị hàm số với trục tung. Cho \(x = 0 \Rightarrow y = \frac{{0 – 2}}{{0 + 4}} = \frac{{ – 1}}{2}.\)
Vậy đồ thị hàm số \(y = \frac{{x – 2}}{{x + 4}}\) cắt trục tung tại điểm có tung độ bằng \(\frac{{ – 1}}{2}.\)
Đáp án D.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình chóp tứ giác có đáy là hình vuông cạnh \(a,\) khi cạnh đáy của hình chóp giảm đi 3 lần và vẫn giữ nguyên chiều cao thì thể tích của khối chóp giảm đi mấy lần:
Câu hỏi:
Cho hình chóp tứ giác có đáy là hình vuông cạnh \(a,\) khi cạnh đáy của hình chóp giảm đi 3 lần và vẫn giữ nguyên chiều cao thì thể tích của khối chóp giảm đi mấy lần:
A.6.
B.9.
Đáp án chính xác
C.27.
D. 3.
Trả lời:
* Thể tích hình chóp tứ giác có đáy là hình vuông cạnh \(a,\) chiều cao \(h\) là: \({V_1} = \frac{1}{3}{a^2}.h\)
* Thể tích hình chóp tứ giác có đáy là hình vuông cạnh \(\frac{a}{3},\) chiều cao \(h\) là: \({V_2} = \frac{1}{3}\frac{{{a^2}}}{9}h.\)
* Tỷ số thể tích là: \(\frac{{{V_1}}}{{{V_2}}} = 9.\)
Đáp án B.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Chọn kết quả sai trong các kết quả dưới đây:
Câu hỏi:
Chọn kết quả sai trong các kết quả dưới đây:
A.\(\mathop {\lim }\limits_{x \to {x_0}} x = {x_0}\)
B.\(\mathop {\lim }\limits_{x \to – \infty } {x^5} = – \infty \)
C.\(\mathop {\lim }\limits_{x \to + \infty } \frac{2}{{{x^2}}} = + \infty \)
Đáp án chính xác
D. \(\mathop {\lim }\limits_{x \to {1^ + }} c = c\)
Trả lời:
Ta có:
\(\mathop {\lim }\limits_{x \to {x_0}} x = {x_0}\)
\(\mathop {\lim }\limits_{x \to – \infty } {x^5} = – \infty \)
\(\mathop {\lim }\limits_{x \to + \infty } \frac{2}{{{x^2}}} = 0\)
\(\mathop {\lim }\limits_{x \to {1^ + }} c = c.\)
Đáp án C.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Hàm số \(y = \sqrt {2x – {x^2}} \) nghịch biến trên khoảng:
Câu hỏi:
Hàm số \(y = \sqrt {2x – {x^2}} \) nghịch biến trên khoảng:
A.\(\left( {0;1} \right)\)
B.\(\left( {1; + \infty } \right)\)
C.\(\left( {0;2} \right)\)
D. \(\left( {1;2} \right)\)
Đáp án chính xác
Trả lời:
Tập xác định \(D = \left[ {0;2} \right].\)
Ta có \(y’ = \frac{{1 – x}}{{\sqrt {2x – {x^2}} }},\forall x \in \left( {0;2} \right).\)
\(y’ = 0 \Leftrightarrow x = 1.\)
Bảng biến thiên
Dựa vào bảng biến thiên, ta thấy hàm số nghịch biến trên khoảng \(\left( {1;2} \right).\)
Đáp án D.====== **** mời các bạn xem câu tiếp bên dưới **** =====