Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Trắc nghiệm Toán 8

Hình chóp tam giác đều S.ABCD có các mặt là tam giác đều. Gọi O là trung điểm của đường cao SH của hình chóp. Chứng minh rằng AOB^=BOC^=COA^=90°

By admin 28/06/2023 0

Câu hỏi:

Hình chóp tam giác đều S.ABCD có các mặt là tam giác đều. Gọi O là trung điểm của đường cao SH của hình chóp. Chứng minh rằng AOB^=BOC^=COA^=90°

Trả lời:

====== **** mời các bạn xem câu tiếp bên dưới **** =====

  1. Giải SGK Toán 8 Bài 7: Hình chóp đều và hình chóp cụt đều

    Giải bài tập Toán lớp 8 Bài 7: Hình chóp đều và hình chóp cụt đều

    Trả lời câu hỏi giữa bài

    Câu hỏi 1 trang 117 Toán 8 Tập 2: Cắt từ tấm bìa cứng thành các hình như ở hình 118 rồi gấp lại để có những hình chóp đều.

    Lời giải:

    Cắt từ tấm bìa cứng thành các hình (ảnh 1)

    Bài tập (trang 118; 119)

    Bài 36 trang 118 Toán 8 Tập 2: Quan sát hình 120 và điền cụm từ và số thích hợp vào các ô trống ở bảng sau, biết rằng các hình đã cho là những hình chóp đều.

    Quan sát hình 120 và điền cụm từ và số thích hợp vào các ô trống ở bảng sau (ảnh 1)

     

    Chóp tam giác đều

    Chóp tứ giác đều

    Chóp ngũ giác đều

    Chóp lục giác đều

    Đáy

    Tam giác đều

         

    Mặt bên

     

    Tam giác cân

       

    Số cạnh đáy

       

    5

     

    Số cạnh

       

    10

     

    Số mặt

     

    5

       

    Lời giải:

     

    Chóp tam giác đều

    Chóp tứ giác đều

    Chóp ngũ giác đều

    Chóp lục giác đều

    Đáy

    Tam giác đều

    Hình vuông

    Ngũ giác đều

    Lục giác đều

    Mặt bên

    Tam giác cân

    Tam giác cân

    Tam giác cân

    Tam giác cân

    Số cạnh đáy

    3

    4

    5

    6

    Số cạnh

    6

    8

    10

    12

    Số mặt

    4

    5

    6

    7

    Bài 37 trang 118 Toán 8 Tập 2: Hãy xét sự đúng sai của các phát biểu sau:

    a) Hình chóp đều có đáy là hình thoi và chân đường cao trùng với giao điểm hai đường chéo của đáy.

    b) Hình chóp đều có đáy là hình chữ nhật và chân đường cao trùng với giao điểm hai đường chéo của đáy.

    Lời giải:

    – Hình chóp đều là hình chóp có đáy là một đa giác đều, các mặt bên là các tam giác bằng nhau và có chung đỉnh ( là đỉnh của hình chóp).

    – Trên hình chóp đều, chân đường cao H là tâm của đường tròn đi qua các đỉnh của mặt đáy.

    a) Sai, vì hình thoi không phải là tứ giác đều (các góc không bằng nhau).

    b) Sai, vì hình chữ nhật không phải là tứ giác đều (các cạnh không bằng nhau).

    Bài 38 trang 119 Toán 8 Tập 2: Trong các tấm bìa ở hình 121, em gấp lại tấm bìa nào thì có được một hình chóp đều?

    Trong các tấm bìa ở hình 121, em gấp lại tấm bìa nào thì có được một hình chóp đều (ảnh 1)

    Hình 121

    Lời giải:

    Hình a khi gấp lại thì không được một hình chóp đều vì đáy là tứ giác đều nhưng chỉ có ba mặt bên thay vì phải có 4 mặt bên.

    Hình b, c khi gấp lại thì được một hình chóp tứ giác đều.

    Hình d khi gấp lại thì không được một hình chóp tứ giác đều vì ở trên cùng một cạnh đáy có đến 2 mặt bên còn trên một cạnh đáy thì không có mặt bên nào.

    Bài 39 trang 119 Toán 8 Tập 2: Thực hành: Từ tờ giấy cắt ra một hình vuông rồi thực hiện các thao tác theo thứ tự từ 1 đến 6 để có thể ghép được các mặt bên của một hình chóp tứ giác đều (h.122).

    Từ tờ giấy cắt ra một hình vuông (ảnh 1)

    Hình 122

    Lời giải:

    Các bạn tự thực hành ở nhà để giúp mình dễ tưởng tượng hình chóp đều hơn.

  2. Một hình chóp và một hình lăng trụ đứng có diện tích đáy bằng nhau. Chiều cao của hình chóp gấp đôi chiều cao của hình lăng trụ. Tỉ số các thể tích của khối chóp và hình lăng trụ bằng?a) 13b) 23c) 1d) 32

    Câu hỏi:

    Một hình chóp và một hình lăng trụ đứng có diện tích đáy bằng nhau. Chiều cao của hình chóp gấp đôi chiều cao của hình lăng trụ. Tỉ số các thể tích của khối chóp và hình lăng trụ bằng?a) 13b) 23c) 1d) 32

    Trả lời:

    Gọi S là h theo thứ tự là diện tích đáy và chiều cao của hình lăng trụ. Khi đó hình chóp có diện tích đáy S và chiều cao 2h.Tỉ số các thể tích của khối chóp và hình lăng trụ bằng 23. Vậy câu b) là câu trả lời đúng.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  3. Tính thể tích hình chóp tam giác đều có cạnh đáy bằng 2 và cạnh bên bằng 1

    Câu hỏi:

    Tính thể tích hình chóp tam giác đều có cạnh đáy bằng 2 và cạnh bên bằng 1

    Trả lời:

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  4. Một hình chóp cụt đều có đáy là hình vuông, các cạnh đáy bằng a và b. Tính chiều cao của hình chóp cụt đều biết rằng diện tích xung quanh bằng tổng diện tích hai đáy

    Câu hỏi:

    Một hình chóp cụt đều có đáy là hình vuông, các cạnh đáy bằng a và b. Tính chiều cao của hình chóp cụt đều biết rằng diện tích xung quanh bằng tổng diện tích hai đáy

    Trả lời:

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  5. Cho hình chóp A.BCD có đáy BCD. Gọi E, F theo thứ tự là trọng tâm các tam giác BCD, ACD.1. Chứng minh EF // AB2. Gọi K là trọng tâm tam giác ABC. Chứng inh rằng các đường thẳng AE, BF, DK đồng qui.

    Câu hỏi:

    Cho hình chóp A.BCD có đáy BCD. Gọi E, F theo thứ tự là trọng tâm các tam giác BCD, ACD.1. Chứng minh EF // AB2. Gọi K là trọng tâm tam giác ABC. Chứng inh rằng các đường thẳng AE, BF, DK đồng qui.

    Trả lời:

    Do đó G chia trong EA theo tỉ số 1 : 3Chứng minh tương tự, DK cắt AE tại điểm G’, cũng chia trong EA theo tỉ số 1 : 3, suy ra G≡G‘. Vậy AE, BF, DK đồng quy.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

Tags : Tags Bài tập hình chóp đều   hình chóp cụt đều
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Tính -134

Next post

Tính 233

Bài liên quan:

c) AM ⊥ BN.

b) BAO^=MBO^;

Cho hình vuông ABCD có M, N lần lượt là trung điểm của các cạnh BC, CD. Gọi O là giao điểm của AM và BN. Chứng minh: a) ΔABM = ΔBCN;

c) Tam giác DCM là tam giác cân.

b) Ba điểm A, D, M thẳng hàng;

Cho hình thoi ABCD và hình bình hành BCMD. Gọi O là giao điểm của AC và BD. Chứng minh: a) OD=12CM và tam giác ACM là tam giác vuông;

c) Ba điểm B, I, D thẳng hàng.

b) Tứ giác AMCN là hình bình hành;

Leave a Comment Hủy

Mục lục

  1. c) AM ⊥ BN.
  2. b) BAO^=MBO^;
  3. Cho hình vuông ABCD có M, N lần lượt là trung điểm của các cạnh BC, CD. Gọi O là giao điểm của AM và BN. Chứng minh: a) ΔABM = ΔBCN;
  4. c) Tam giác DCM là tam giác cân.
  5. b) Ba điểm A, D, M thẳng hàng;
  6. Cho hình thoi ABCD và hình bình hành BCMD. Gọi O là giao điểm của AC và BD. Chứng minh: a) OD=12CM và tam giác ACM là tam giác vuông;
  7. c) Ba điểm B, I, D thẳng hàng.
  8. b) Tứ giác AMCN là hình bình hành;
  9. Cho hình bình hành ABCD. Gọi M là điểm nằm giữa A và B, N là điểm nằm giữa C và D sao cho AM = CN. Gọi I là giao điểm của MN và AC. Chứng minh: a) ΔIAM = ΔICN;
  10. Cho hình vuông ABCD. Trên các cạnh AB, BC, CD, DA lần lượt lấy các điểm M, N, P, Q sao cho AM = BN = CP = DQ < AB. Chứng minh tứ giác MNPQ là hình vuông.
  11. Cho tam giác ABC vuông cân tại C. Trên các cạnh AC, BC lần lượt lấy các điểm D, G sao cho AD = CG < AC. Từ điểm D kẻ DE vuông góc với AC (E thuộc AB). Chứng minh tứ giác CDEG là hình chữ nhật.
  12. Cho hình chữ nhật ABCD có M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Chứng minh tứ giác MNPQ là hình thoi.
  13. Cho tứ giác ABCD có DAB^=BCD^,ABD^=CDB^. Chứng minh ABCD là hình bình hành.
  14. b) Khoảng cách tối thiểu và khoảng cách tối đa để xem chiếc ti vi đó là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?
  15. Màn hình một chiếc ti vi có dạng hình chữ nhật với kích thước màn hình ti vi được tính bằng độ dài đường chéo của màn hình (đơn vị: inch, trong đó 1 inch = 2,54 cm). Người ta đưa ra công thức tính khoảng cách an toàn khi xem ti vi để giúp khách chọn được chiếc ti vi phù hợp với căn phòng hàng của mình như sau:     Khoảng cách tối thiểu = 5,08 . d (cm); Khoảng cách tối đa = 7,62 . d (cm). Trong đó, d là kích thước màn hình ti vi tính theo inch. Với một chiếc ti vi có chiều dài màn hình là 74,7 cm; chiều rộng màn hình là 32 cm: a) Kích thước màn hình của chiếc ti vi đó là bao nhiêu inch (làm tròn kết quả đến hàng đơn vị)?
  16. Hình 72 mô tả một cây cao 4 m. Biết rằng khi trời nắng, cây đổ bóng trên mặt đất, điểm xa nhất của bóng cây cách gốc cây một khoảng là 3 m. Tính khoảng cách từ điểm xa nhất của bóng cây đến đỉnh 4 m của cây.
  17. Cho hình chữ nhật MNPQ. Đoạn thẳng MP bằng đoạn thẳng nào sau đây? A. NQ. B. MN. C. NP. D. QM.
  18. Cho hình bình hành MNPQ có các góc khác 90°, MP cắt NQ tại I. Khi đó A. IM = IN. B. IM = IP. C. IM = IQ. D. IM = MP.
  19. Cho hình thang cân ABCD có AB // CD, A^=80°. Khi đó, C^ bằng A. 80°. B. 90°. C. 100°. D. 110°.
  20. Cho tứ giác ABCD có A^=60°,B^=70°,C^=80°. Khi đó, D^ bằng A. 130°. B. 140°. C. 150°. D. 160°.
  21. Bạn Thảo có một mảnh giấy có dạng hình tròn. Bạn Thảo đố bạn Minh: Không dùng thước thẳng và compa, làm thế nào có thể xác định tâm của hình tròn và chọn ra 4 vị trí trên đường tròn đó để chúng là 4 đỉnh của một hình vuông? Bạn Minh đã làm như sau: Bước 1. Gấp mảnh giấy sao cho hai nửa hình tròn trùng khít nhau. Nét gấp thẳng tạo thành đường kính của hình tròn. Ta đánh dấu hai đầu mút của đường kính đó là hai điểm A, C. Bước 2. Tiếp tục gấp mảnh giấy (có dạng nửa hình tròn) ở Bước 1 sao cho hai nửa mới của nửa hình tròn đó lại trùng khít nhau. Trải miếng bìa về dạng hình tròn ban đầu, ta được nét gấp mới là một đường kính khác của hình tròn. Bước 3. Ta đánh dấu giao điểm của hai đường kính là O và hai đầu mút của đường kính mới là hai điểm B, D. Khi đó O là tâm của hình tròn và tứ giác ABCD là hình vuông (Hình 71). Em hãy giải thích cách làm của bạn Minh.
  22. Cho hai mảnh giấy, mỗi mảnh có dạng hình vuông với độ dài cạnh là 1 dm. Hãy trình bày cách cắt ghép hai mảnh giấy đó để được một hình vuông có độ dài cạnh là 2 dm.
  23. Cho tam giác ABC vuông tại A có đường phân giác AD. Gọi H, K lần lượt là hình chiếu của D trên AB, AC. Chứng minh tứ giác AHDK là hình vuông.
  24. Cho hình thoi ABCD có A^=90°. Chứng minh ABCD là hình vuông.
  25. Cho hình thoi ABCD có AC = BD. Chứng minh ABCD là hình vuông.
  26. Cho tam giác ABC vuông cân tại A. Trên cạnh BC lấy các điểm D, E sao cho BD = DE = EC. Qua D và E kẻ đường thẳng vuông góc với BC, chúng cắt AB và AC lần lượt tại H và G. Chứng minh tứ giác DEGH là hình vuông.
  27. c) Cho hình chữ nhật ABCD có AC là tia phân giác của góc DAB. • Tam giác ABC có phải là tam giác vuông cân hay không? • ABCD có phải là hình vuông hay không?
  28. b) Cho hình chữ nhật ABCD có hai đường chéo AC và BD vuông góc với nhau (Hình 69). • Đường thẳng AC có phải là đường trung trực của thẳng BD hay không? đoạn • ABCD có phải là hình vuông hay không?
  29. a) Cho hình chữ nhật ABCD có hai cạnh kề AB và BC bằng nhau. ABCD có phải là hình vuông hay không?
  30. Cho hình vuông ABCD. Tính số đo các góc CAB, DAC.
  31. b) Mỗi hình vuông có là một hình thoi hay không?
  32. a) Mỗi hình vuông có là một hình chữ nhật hay không?
  33. Cho biết các góc và các cạnh của tứ giác ABCD ở Hình 65 có đặc điểm gì.
  34. Một số hoạ tiết và hoa văn trên thổ cẩm (Hình 64) có dạng hình vuông. Hình vuông có những tính chất gì? Có những dấu hiệu nào để nhận biết một tứ giác là hình vuông?
  35. Một viên gạch trang trí có dạng hình thoi với độ dài cạnh là 40 cm và số đo một góc là 60° (Hình 63). Diện tích của viên gạch đó là bao nhiêu centimét vuông (làm tròn kết quả đến hàng phần trăm)?
  36. Hình 62 mô tả một lưới mắt cáo có dạng hình thoi với độ dài của hai đường chéo là 45 mm và 90 mm. Độ dài cạnh của ô lưới mắt cáo đó là bao nhiêu milimét (Làm tròn kết quả đến hàng đơn vị)?
  37. Cho hình thoi ABCD có CDB^=40°. Tính số đo mỗi góc của hình thoi ABCD.
  38. Cho hình thoi ABCD có hai đường chéo AC và BD cắt nhau tại O. Chứng minh:AC2 + BD2 = 4(OA2 + OB2) = 4AB2.
  39. Cho hình bình hành ABCD có tia AC là tia phân giác của góc DAB. Chứng minh ABCD là hình thoi .
  40. Cho tam giác ABC cân tại A có M là trung điểm BC. Trên tia đối của tia MA lấy điểm N sao cho MN = MA. Chứng minh tứ giác ABNC là hình thoi.
  41. b) Cho hình bình hành ABCD có hai đường chéo AC và BD vuông góc với nhau (Hình 60). • Đường thẳng AC có phải là đường trung trực của đoạn thẳng BD hay không? • ABCD có phải là hình thoi hay không?
  42. a) Cho hình bình hành ABCD có hai cạnh kề AB và BC bằng nhau. ABCD có phải là hình thoi hay không?
  43. Cho hình thoi ABCD có ABC^=120°. Chứng minh tam giác ABD là tam giác đều.
  44. c) Hai tam giác ABC và ADC có bằng nhau hay không? Tia AC có phải là tia phân giác của BAD^ hay không?
  45. b) Hai đường chéo AC và BD có vuông góc với nhau hay không?
  46. Cho hình thoi ABCD có hai đường chéo AC và BD cắt nhau tại O (Hình 58). a) Hình thoi ABCD có là hình bình hành hay không?
  47. So sánh độ dài các cạnh của tứ giác ABCD ở Hình 56.
  48. Hoạ tiết trên vải ở Hình 55 gợi lên hình ảnh của hình thoi. Hình thoi có những tính chất gì? Có những dấu hiệu nào để nhận biết một tứ giác là hình thoi?
  49. Bạn Linh có một mảnh giấy dạng hình tròn. Bạn Linh đố bạn Bình: Làm thế nào có thể chọn ra 4 vị trí trên đường tròn đó để chúng là 4 đỉnh của một hình chữ nhật? Bạn Bình đã làm như sau: Bước 1. Gấp mảnh giấy sao cho hai nửa hình tròn trùng khít nhau. Nét gấp thẳng tạo thành đường kính của hình tròn. Ta đánh dấu hai đầu mút của đường kính đó là hai điểm A, C. Bước 2. Sau đó lại gấp tương tự mảnh giấy đó nhưng theo đường kính mới và đánh dấu hai đầu mút của đường kính mới là hai điểm B, D. Khi đó tứ giác ABCD là hình chữ nhật (Hình 53). Em hãy giải thích cách làm của bạn Bình.
  50. Một khu vườn có dạng tứ giác ABCD với các góc A, B, D là góc vuông, AB = 400 m, AD = 300 m. Người ta đã làm một cái hồ nước có dạng hình tròn, khi đó vị trí C không còn nằm trong khu vườn nữa (Hình 52). Tính khoảng cách từ vị trí C đến mỗi vị trí A, B, D.
  51. Cho hình chữ nhật ABCD có điểm E nằm trên cạnh CD sao cho AEB^=78°, EBC^=39°. Tính số đo của BEC^ và EAB^.
  52. Cho tam giác ABC vuông tại A có M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm D cho MD = MA. Chứng minh tứ giác ABDC là sao hình chữ nhật và AM=12BC.

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán