Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 10

Sách bài tập Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn

By admin 13/10/2023 0

Giải SBT Toán lớp 10 Bài 3: Bất phương trình bậc nhất hai ẩn

Giải SBT Toán 10 trang 18 Tập 1

Bài 2.1 trang 18 sách bài tập Toán lớp 10 Tập 1: Cho bất phương trình bậc nhất hai ẩn -3x + y < 4.

a) Biểu diễn miền nghiệm của bất phương trình đã cho trên mặt phẳng tọa độ.

b) Từ đó suy ra miền nghiệm của bất phương trình -3x + y ≤ 4 và miền nghiệm của bất phương trình -3x + y ≥ 4.

Lời giải:

a) Biểu diễn miền nghiệm của bất phương trình -3x + y < 4 trên mặt phẳng tọa độ.

Bước 1. Vẽ đường thẳng d: -3x + y = 4 trên mặt phẳng tọa độ Oxy như sau:

• Xác định hai điểm thuộc đường thẳng d: -3x + y = 4.

Ta có bảng sau:

Cho bất phương trình bậc nhất hai ẩn -3x + y < 4

Do đó đồ thị của đường thẳng d: -3x + y = 4 đi qua các điểm có tọa độ (0; 4) và (1; 7).

• Xác định 2 điểm đó trên hệ trục tọa độ Oxy và kẻ đường thẳng đi qua 2 điểm đó, ta thu được đường thẳng d: -3x + y = 4.

Bước 2. Ta chọn O(0; 0) là điểm không thuộc đường thẳng d: -3x + y = 4 và thay vào biểu thức -3x + y, ta có -3 . 0 + 0 = 0 < 4.

Do đó miền nghiệm của bất phương trình -3x + y < 4 là nửa mặt phẳng bờ d chứa gốc tọa độ và bỏ đi đường thẳng d (miền không được gạch).

Cho bất phương trình bậc nhất hai ẩn -3x + y < 4

b) Khi đó miền nghiệm của bất phương trình -3x + y ≤ 4 là nửa mặt phẳng bờ d chứa gốc tọa độ (miền không được gạch).

Miền nghiệm của bất phương trình -3x + y ≥ 4 là nửa mặt phẳng bờ d không chứa gốc tọa độ (miền được gạch).

Cho bất phương trình bậc nhất hai ẩn -3x + y < 4

Bài 2.2 trang 18 sách bài tập Toán lớp 10 Tập 1: Cho bất phương trình 2x + 3y + 3 ≤ 5x + 2y + 3.

Bằng cách chuyển vế, hãy đưa bất phương trình trên về dạng tổng quát của bất phương trình bậc nhất hai ẩn. Biểu diễn miền nghiệm của bất phương trình bậc nhất hai ẩn đó trên mặt phẳng tọa độ.

Lời giải:

Ta có 2x + 3y + 3 ≤ 5x + 2y + 3

⇔ 2x + 3y + 3 – 5x – 2y – 3 ≤ 0.

⇔-3x + y ≤ 0.

Biểu diễn miền nghiệm của bất phương trình -3x + y ≤ 0 trên mặt phẳng tọa độ:

Bước 1. Vẽ đường thẳng d: -3x + y = 0 theo các bước sau:

• Xác định hai điểm thuộc đường thẳng d: -3x + y = 0.

Cho bất phương trình 2x + 3y + 3 ≤ 5x + 2y + 3

Do đó đường thẳng d: -3x + y = 0 đi qua hai điểm có tọa độ (0; 0) và (1; 3).

• Xác định hai điểm đó trên hệ trục tọa độ Oxy, kẻ đường thẳng đi qua 2 điểm đó ta thu được đường thẳng d: -3x + y = 0.

Bước 2. Ta chọn điểm (0; 1) là điểm không thuộc đường thẳng d: -3x + y = 0 và thay vào biểu thức -3x + y ta có -3 . 0 + 1 = 1 > 0.

Do đó miền nghiệm của bất phương trình -3x + y ≤ 0 là nửa mặt phẳng bờ d không chứa điểm (0; 1) (miền không được gạch).

Cho bất phương trình 2x + 3y + 3 ≤ 5x + 2y + 3

Bài 2.3 trang 18 sách bài tập Toán lớp 10 Tập 1: Xác định một bất phương trình bậc nhất hai ẩn nhận nửa mặt phẳng bờ là đường thẳng d (miền không bị gạch) làm miền nghiệm (H.2.3).

Xác định một bất phương trình bậc nhất hai ẩn nhận nửa mặt phẳng bờ là đường thẳng d

Lời giải:

Ta thấy đường thẳng d đi qua hai điểm (0; -2) và (4; 0).

Gọi phương trình đường thẳng d: y = ax + b (a ≠ 0).

Thay x = 0; y = -2 vào đường thẳng d ta có:

-2 = a . 0 + b

⇒ b = -2.

Thay x = 4; y = 0 vào đường thẳng d ta có:

0 = 4 . a + (-2)

⇒ 2 = 4 . a

⇒ a = 24=12

Do đó phương trình đường thẳng d: y = 12x – 2

⇒ 2y = x – 4

⇒ x – 2y = 4.

Chọn điểm O(0; 0) là điểm không thuộc đường thẳng d và thay vào biểu thức x – 2y ta được: 0 – 2 . 0 = 0 < 4.

Do đó bất phương trình nhận nửa mặt phẳng bờ là đường thẳng d (miền không bị gạch) làm miền nghiệm là x – 2y ≤ 4.

Giải SBT Toán 10 trang 19 Tập 1

Bài 2.4 trang 19 sách bài tập Toán lớp 10 Tập 1: Cho bất phương trình x + 2y ≥ -4.

a) Biểu diễn miền nghiệm của bất phương trình đã cho trên mặt phẳng tọa độ.

b) Miền nghiệm có chứa bao nhiêu điểm (x; y) với x, y là các số nguyên âm?

Lời giải:

a) Biểu diễn miền nghiệm của bất phương trình x + 2y ≥ -4 trên mặt phẳng tọa độ:

Bước 1. Ta vẽ đường thẳng d: x + 2y = -4 theo các bước sau:

• Xác định hai điểm thuộc đường thẳng d.

Ta có bảng sau:

Cho bất phương trình x + 2y ≥ -4 Biểu diễn miền nghiệm của bất phương trình đã cho

Do đó đường thẳng d: x + 2y = -4 đi qua hai điểm (0; -2) và (-4; 0).

• Xác định hai điểm đó trên hệ trục tọa độ Oxy, kẻ đường thẳng đi qua 2 điểm đó ta thu được đường thẳng d: x + 2y = -4.

Bước 2. Chọn điểm O(0; 0) không thuộc đường thẳng d và thay vào biểu thức x + 2y ta được 0 + 2 . 0 = 0 > -4.

Do đó miền nghiệm của bất phương trình x + 2y ≥ -4 là nửa mặt phẳng bờ d chứa gốc tọa độ (miền không được gạch).

Cho bất phương trình x + 2y ≥ -4 Biểu diễn miền nghiệm của bất phương trình đã cho

b) Do x, y là các số nguyên âm và x + 2y ≥ -4 nên 0 > x > -4.

Với y ≤ -2 thì 2y ≤ -4, mà x là số nguyên âm nên x + 2y < -4 (loại).

Do đó 0 > y > -2 suy ra y = -1.

Ta có bảng sau:

Cho bất phương trình x + 2y ≥ -4 Biểu diễn miền nghiệm của bất phương trình đã cho

Vậy miền nghiệm chứa hai điểm (x; y) ∈ {(-1; -1); (-2; -1)} với x, y là các số nguyên âm.

Bài 2.5 trang 19 sách bài tập Toán lớp 10 Tập 1: Một cửa hàng bán lẻ bán hai loại hạt cà phê. Loại thứ nhất giá 140 nghìn đồng/kg và loại thứ hai giá 180 nghìn đồng/kg. Cửa hàng trộn x kg loại thứ nhất và y kg loại thứ hai sao cho hạt cà phê đã trộn có giá không quá 170 nghìn đồng/kg.

a) Viết bất phương trình bậc nhất hai ẩn x, y thỏa mãn điều kiện đề bài.

b) Biểu diễn miền nghiệm của bất phương trình tìm được ở câu a trên mặt phẳng tọa độ.

Lời giải:

a) Giá tiền của x kg cà phê loại thứ nhất là 140x (nghìn đồng).

Giá tiền của y kg cà phê loại thứ hai là 180y (nghìn đồng).

Tổng số tiền khi trộn x kg loại thứ nhất và y kg loại thứ hai là: 140x + 180y (nghìn đồng).

Tổng số kg cà phê sau khi trộn x kg loại thứ nhất và y kg loại thứ hai là: x + y (kg).

Giá của cà phê sau khi trộn có giá cao nhất là 170 nghìn đồng/kg nên số tiền cao nhất thu được khi bán x + y kg cà phê là 170(x + y) (nghìn đồng).

Khi đó ta có bất phương trình 140x + 180y ≤ 170(x + y).

⇔ 140x – 170x + 180y – 170y ≤ 0

⇔-30x + 10y ≤ 0

⇔-3x + y ≤ 0

Vậy bất phương trình bậc nhất hai ẩn x, y thỏa mãn điều kiện đề bài là -3x + y ≤ 0.

b) Biểu diễn miền nghiệm của bất phương trình -3x + y ≤ 0 trên mặt phẳng tọa độ:

Bước 1: Ta vẽ đường thẳng d: -3x + y = 0 như sau:

• Xác định hai điểm thuộc đường thẳng d: -3x + y = 0.

Do đó đường thẳng d: -3x + y = 0 đi qua hai điểm có tọa độ (0; 0) và (1; 3).

• Xác định hai điểm đó trên hệ trục tọa độ Oxy, kẻ đường thẳng đi qua 2 điểm đó ta thu được đường thẳng d: -3x + y = 0.

Bước 2: Ta chọn điểm (0; 1) là điểm không thuộc đường thẳng d: -3x + y = 0 và thay vào biểu thức -3x + y ta có -3 . 0 + 1 = 1 > 0.

Do đó miền nghiệm của bất phương trình -3x + y ≤ 0 là nửa mặt phẳng bờ d không chứa điểm (0; 1) (miền không được gạch).

Xem thêm các bài giải SBT Toán 10 Kết nối tri thức hay, chi tiết khác:

Bài tập cuối chương 1

Bài 4: Hệ bất phương trình bậc nhất hai ẩn

Bài tập cuối chương 2

Bài 5: Giá trị lượng giác của một góc từ 0° đến 180°

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Bộ 10 đề thi học kì 1 Kinh tế Pháp luật 11 Kết nối tri thức có đáp án năm 2023

Next post

Bộ 10 đề thi giữa kì 1 Kinh tế Pháp luật 11 Kết nối tri thức có đáp án năm 2023

Bài liên quan:

20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10

Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10

Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới

Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10

Trắc nghiệm Toán 10 Kết nối tri thức có đáp án

Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)

Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10

Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  2. Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  3. Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới
  4. Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10
  5. Trắc nghiệm Toán 10 Kết nối tri thức có đáp án
  6. Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)
  7. Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10
  8. Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề
  9. Giáo án Toán 10 Kết nối tri thức (cả năm) mới nhất 2023
  10. Chuyên đề Toán 10 Kết nối tri thức | Giải bài tập Chuyên đề học tập Toán 10 hay, chi tiết
  11. Sách bài tập Toán 10 Kết nối tri thức | Giải SBT Toán 10 | Giải sách bài tập Toán 10 Tập 1, Tập 2 hay nhất | SBT Toán 10 Kết nối tri thức | SBT Toán 10 KNTT
  12. Tổng hợp Lý thuyết Toán lớp 10 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 10 | Tổng hợp kiến thức Toán 10 chương trình mới
  13. Giải sgk Toán 10 Kết nối tri thức | Giải Toán 10 | Giải Toán lớp 10 | Giải bài tập Toán 10 hay nhất | Giải Toán 10 Tập 1, Tập 2 Kết nối tri thức
  14. Sách bài tập Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  15. Giải SGK Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  16. 20 câu Trắc nghiệm Tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  17. Lý thuyết Tập hợp và các phép toán trên tập hợp (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  18. Bài giảng điện tử Tập hợp và các phép toán trên tập hợp | Kết nối tri thức Giáo án PPT Toán 10
  19. Giáo án Toán 10 Bài 2 (Kết nối tri thức 2023): Tập hợp và các phép toán trên tập hợp
  20. Sách bài tập Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  21. Giải SGK Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  22. 30 câu Trắc nghiệm Chương 1: Mệnh đề và tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  23. Lý thuyết Toán 10 Chương 1 (Kết nối tri thức 2023): Mệnh đề và Tập hợp hay, chi tiết
  24. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 1
  25. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  26. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  27. 20 câu Trắc nghiệm Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  28. Lý thuyết Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  29. Bài giảng điện tử Bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  30. Giáo án Toán 10 Bài 3 (Kết nối tri thức 2023): Bất phương trình bậc nhất hai ẩn
  31. Giải SGK Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  32. Lý thuyết Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  33. Bài giảng điện tử Hệ bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  34. Giáo án Toán 10 Bài 4 (Kết nối tri thức 2023): Hệ bất phương trình bậc nhất hai ẩn
  35. 20 câu Trắc nghiệm Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  36. Sách bài tập Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  37. Giải SGK Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  38. Lý thuyết Toán 10 Chương 2 (Kết nối tri thức 2023): Bất phương trình và hệ phương trình bậc nhất hai ẩn hay, chi tiết
  39. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 2
  40. 30 câu Trắc nghiệm Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  41. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  42. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  43. Lý thuyết Giá trị lượng giác của một góc từ 0 đến 180 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  44. Bài giảng điện tử Giá trị lượng giác của một góc từ 0 độ đến 180 độ | Kết nối tri thức Giáo án PPT Toán 10
  45. Giáo án Toán 10 Bài 5 (Kết nối tri thức 2023): Giá trị lượng giác của một góc từ 0 độ đến 180 độ
  46. 20 câu Trắc nghiệm Giá trị lượng giác của 1 góc từ 0° đến 180° (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  47. Sách bài tập Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0° đến 180°
  48. Giải SGK Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0 đến 180
  49. Lý thuyết Hệ thức lượng trong tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  50. Bài giảng điện tử Hệ thức lượng trong tam giác | Kết nối tri thức Giáo án PPT Toán 10
  51. Giáo án Toán 10 Bài 6 (Kết nối tri thức 2023): Hệ thức lượng trong tam giác
  52. 20 câu Trắc nghiệm Hệ thức lượng trong tam giác (Kết nối tri thức 2023) có đáp án – Toán lớp 10

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán