Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 10

Sách bài tập Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn

By admin 13/10/2023 0

Giải SBT Toán lớp 10 Bài 4: Hệ bất phương trình bậc nhất hai ẩn

Giải SBT Toán 10 trang 23 Tập 1

Bài 2.6 trang 23 sách bài tập Toán lớp 10 Tập 1: Biểu diễn miền nghiệm của các hệ bất phương trình sau trên mặt phẳng tọa độ:

Biểu diễn miền nghiệm của các hệ bất phương trình sau trên mặt phẳng tọa độ

ý b

ý c

Lời giải:

Biểu diễn miền nghiệm của các hệ bất phương trình sau trên mặt phẳng tọa độ

Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:

• Xét miền nghiệm của bất phương trình x ≥ -1.

Vẽ đường thẳng d1: x = -1 bằng cách vẽ một đường thẳng song song với trục Oy tại một điểm có hoành độ bằng -1.

Chọn điểm I(1; 1) ∉ d1 và thay vào biểu thức x, ta có 1 > -1.

Suy ra miền nghiệm của bất phương trình x ≥ -1 là nửa mặt phẳng bờ d1 có chứa điểm I(1; 1).

• Xét miền nghiệm của bất phương trình y ≥ 0.

Đường thẳng d2: y = 0 là đường thẳng trùng với trục Ox.

Chọn điểm I(1; 1) ∉ d2 và thay vào biểu thức y, ta có 1 > 0.

Suy ra miền nghiệm của bất phương trình y ≥ 0 là nửa mặt phẳng bờ d2 có chứa điểm I(1; 1).

• Xét miền nghiệm của bất phương trình x + y ≤ 4.

Vẽ đường thẳng d3: x + y = 4 bằng cách vẽ một đường thẳng qua hai điểm (0; 4) và (4; 0).

Chọn điểm I(1; 1) Ï d3 và thay vào biểu thức x + y = 4, ta có 1 + 1 = 2 < 4.

Suy ra miền nghiệm của bất phương trình x + y ≤ 4 là nửa mặt phẳng bờ d3 có chứa điểm I(1; 1).

Khi đó miền nghiệm của hệ là miền không bị gạch như hình vẽ dưới đây.

Biểu diễn miền nghiệm của các hệ bất phương trình sau trên mặt phẳng tọa độ

Biểu diễn miền nghiệm của các hệ bất phương trình sau trên mặt phẳng tọa độ

Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:

• Đường thẳng d1: x = 0 là đường thẳng trùng với trục Oy.

Chọn điểm I(1; 1) ∉ d1 và thay vào biểu thức x ta được 1 > 0.

Suy ra miền nghiệm của bất phương trình x > 0 là nửa mặt phẳng bờ d1 có chứa điểm I(1;1) và bỏ đi đường thẳng d1.

• Đường thẳng y = 0 là đường thẳng trùng với trục Ox.

Chọn điểm I(1; 1) ∉ d2 và thay vào biểu thức y ta được 1 > 0.

Suy ra miền nghiệm của bất phương trình y > 0 là nửa mặt phẳng bờ d2 có chứa điểm I(1;1) và bỏ đi đường thẳng d2.

• Vẽ đường thẳng d3: x – y – 4 = 0 bằng cách vẽ đường thẳng đi qua hai điểm (0; -4) và (4; 0).

Chọn điểm I(1; 1)∉ d3 và thay vào biểu thức x – y – 4 ta được 1 – 1 – 4 = -4 < 0.

Suy ra miền nghiệm của bất phương trình x – y – 4 < 0 là nửa mặt phẳng bờ d3 có chứa điểm I(1; 1) và bỏ đi đường thẳng d3.

Khi đó miền nghiệm của hệ là miền không bị gạch như hình vẽ dưới đây:

Biểu diễn miền nghiệm của các hệ bất phương trình sau trên mặt phẳng tọa độ

Biểu diễn miền nghiệm của các hệ bất phương trình sau trên mặt phẳng tọa độ

Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:

• Đường thẳng d1: y = 3 là đường thẳng song song với trục Ox và đi qua điểm có tung độ bằng 3.

Chọn điểm O(0; 0) ∉ d1 và thay vào biểu thức y ta được 0 < 3.

Suy ra miền nghiệm của bất phương trình y ≤ 3 là nửa mặt phẳng bờ d1 có chứa điểm O(0; 0).

• Đường thẳng d2: x = 3 là đường thẳng song song với trục Oy và đi qua điểm có hoành độ bằng 3.

Chọn điểm O(0; 0) ∉ d2 và thay vào biểu thức x ta được 0 < 3.

Suy ra miền nghiệm của bất phương trình x ≤ 3 là nửa mặt phẳng bờ d2 có chứa điểm O(0; 0).

• Đường thẳng d3: x = -1 là đường thẳng song song với trục Oy và đi qua điểm có hoành độ bằng -1.

Chọn điểm O(0; 0) ∉d3 và thay vào biểu thức x ta được 0 > -1.

Suy ra miền nghiệm của bất phương trình x ≥ -1 là nửa mặt phẳng bờ d3 có chứa điểm O(0; 0).

Đường thẳng d4: y = -2 là đường thẳng song song với trục Ox và đi qua điểm có tung độ bằng -2.

Chọn điểm O(0; 0) ∉ d4 và thay vào biểu thức x ta được 0 > -2.

Suy ra miền nghiệm của bất phương trình y ≥ -2 là nửa mặt phẳng bờ d4 có chứa điểm O(0; 0).

Khi đó miền nghiệm của hệ là miền không bị gạch như hình vẽ dưới đây:

Biểu diễn miền nghiệm của các hệ bất phương trình sau trên mặt phẳng tọa độ

Bài 2.7 trang 23 sách bài tập Toán lớp 10 Tập 1: Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức F(x; y) = 2x + 3y với (x; y) thuộc miền nghiệm của hệ bất phương trình

Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức F(x; y) = 2x + 3y

Lời giải:

Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:

• Vẽ đường thẳng d1: x + y = 6 bằng cách vẽ đường thẳng đi qua hai điểm (6; 0) và (0; 6).

Chọn điểm I(1; 1) ∉ d1 và thay vào biểu thức x + y ta được 1 + 1 = 2 < 6.

Suy ra miền nghiệm của bất phương trình x + y ≤ 6 là nửa mặt phẳng bờ d1 có chứa điểm I(1; 1).

• Đường thẳng d2: x = 0 là đường thẳng trùng với trục Oy.

Chọn điểm I(1; 1) ∉d2 và thay vào biểu thức x ta được 1 > 0.

Suy ra miền nghiệm của bất phương trình x ≥ 0 là nửa mặt phẳng bờ d2 có chứa điểm I(1; 1).

• Đường thẳng d3: y = 0 là đường thẳng trùng với trục Ox.

Chọn điểm I(1; 1)∉ d3 và thay vào biểu thức y ta được 1 > 0.

Suy ra miền nghiệm của bất phương trình y ≥ 0 là nửa mặt phẳng bờ d3 có chứa điểm I(1; 1).

Khi đó miền nghiệm của hệ là miền không bị gạch như hình vẽ dưới đây:

Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức F(x; y) = 2x + 3y

Ta thấy miền nghiệm của hệ bất phương trình đã cho là miền tam giác AOB với A(6; 0), O(0; 0) và B(0; 6).

F(6; 0) = 2 . 6 + 3. 0 = 12;

F(0; 0) = 2 . 0 + 3 . 0 = 0;

F(0; 6) = 2 . 0 + 3 . 6 = 18.

Do đó giá trị lớn nhất của F(x; y) = 18 khi x = 0 và y = 6; giá trị nhỏ nhất của F(x; y) = 0 khi x = 0 và y = 0.

Bài 2.8 trang 23 sách bài tập Toán lớp 10 Tập 1: Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức F(x; y) = 4x – 3y trên miền nghiệm của hệ bất phương trình

Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức F(x; y) = 4x - 3y

Lời giải:

Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:

• Vẽ đường thẳng d1: x + y = -4 bằng cách vẽ đường thẳng đi qua hai điểm (0; -4) và (-4; 0).

Chọn điểm I(1; 1) ∉ d1 và thay vào biểu thức x + y ta được 1 + 1 = 2 > -4.

Suy ra miền nghiệm của bất phương trình x + y ≥ -4 là nửa mặt phẳng bờ d1 chứa điểm I(1; 1).

• Vẽ đường thẳng d2: x + y = 5 bằng cách vẽ đường thẳng đi qua hai điểm (0; 5) và (5; 0).

Chọn điểm I(1; 1) ∉ d2 và thay vào biểu thức x + y ta được 1 + 1 = 2 < 5.

Suy ra miền nghiệm của bất phương trình x + y ≤ 5 là nửa mặt phẳng bờ d2 chứa điểm I(1; 1).

• Vẽ đường thẳng d3: x – y = 5 bằng cách vẽ đường thẳng đi qua hai điểm (0; -5) và (5; 0).

Chọn điểm I(1; 1) ∉ d3 và thay vào biểu thức x + y ta được 1 – 1 = 0 < 5.

Suy ra miền nghiệm của bất phương trình x – y ≤ 5 là nửa mặt phẳng bờ d3 chứa điểm I(1; 1).

• Vẽ đường thẳng d4: x – y = -4 bằng cách vẽ đường thẳng đi qua hai điểm (0; 4) và (-4; 0).

Chọn điểm I(1; 1) ∉ d4 và thay vào biểu thức x – y ta được 1 – 1 = 0 > -4.

Suy ra miền nghiệm của bất phương trình x – y ≥ -4 là nửa mặt phẳng bờ d4 chứa điểm I(1; 1).

Khi đó miền nghiệm của hệ là miền không bị gạch như hình vẽ dưới đây:

Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức F(x; y) = 4x - 3y

Miền nghiệm của hệ bất phương trình trên là hình vuông ABCD với A(5; 0), B(0,5; -4,5), C(-4; 0) và D(0,5; 4,5).

F(5; 0) = 4 . 5 – 3 . 0 = 20;

F(0,5; -4,5) = 4 . 0,5 – 3. (-4,5) = 15,5;

F(-4; 0) = 4 . (-4) – 3 . 0 = -16;

F(0,5; 4,5) = 4 . 0,5 – 3 . 4,5 = -11,5.

Vậy giá trị lớn nhất của F(x; y) = 20 khi x = 5 và y = 0 và giá trị nhỏ nhất của biểu thức F(x; y) = -16 khi x = -4 và y = 0.

Bài 2.9 trang 23 sách bài tập Toán lớp 10 Tập 1: Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 12 g hương liệu, 9 lít nước và 315 g đường để pha chế hai loại nước A và B. Để pha chế 1 lít nước A cần 45 g đường, 1 lít nước và 0,5 g hương liệu; để pha chế 1 lít nước B cần 15 g đường, 1 lít nước và 2 g hương liệu. Mỗi lít nước A nhận được 60 điểm thưởng, mỗi lít nước B nhận được 80 điểm thưởng. Hỏi cần pha chế bao nhiêu lít nước mỗi loại để đội chơi được số điểm thưởng là cao nhất?

Lời giải:

Gọi số lít nước A và B cần pha chế lần lượt là x lít và y lít (x ≥ 0; y ≥ 0).

Do 1 lít nước A cần 45 g đường, 1 lít nước và 0,5 g hương liệu nên x lít nước A cần 45x g đường, x lít nước và 0,5x g hương liệu.

Do 1 lít nước B cần 15 g đường, 1 lít nước và 2 g hương liệu nên y lít nước A cần 15y g đường, y lít nước và 2y g hương liệu.

Do có tối đa 12g hương liệu, 9 lít nước và 315 g đường nên 45x + 15y ≤ 315; x + y ≤ 9 và 0,5x + 2y ≤ 12.

Khi đó ta có hệ bất phương trình

Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 12 g hương liệu, 9 lít nước và 315 g đường

Với số điểm thưởng đội chơi nhận được là F(x; y) = 60x + 80y (điểm).

Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:

• Đường thẳng d1: x = 0 là đường thẳng trùng với trục Oy.

Chọn điểm I(1; 1)∉ d1 và thay bảo biểu thức x ta được 1 > 0.

Suy ra miền nghiệm của bất phương trình x ≥ 0 là nửa mặt phẳng bờ d1 chứa điểm I(1; 1).

• Đường thẳng d2: y = 0 là đường thẳng trùng với trục Ox.

Chọn điểm I(1; 1) ∉ d2 và thay bảo biểu thức y ta được 1 > 0.

Suy ra miền nghiệm của bất phương trình y ≥ 0 là nửa mặt phẳng bờ d2 chứa điểm I(1; 1).

• Vẽ đường thẳng d3: 0,5x + 2y = 12 bằng cách vẽ đường thẳng đi qua hai điểm (0; 6) và (4; 5).

Chọn điểm I(1; 1)∉ d3 và thay bảo biểu thức 0,5x + 2y ta được 0,5 . 1 + 2 . 1 = 2,5 < 12.

Suy ra miền nghiệm của bất phương trình 0,5x + 2y ≤ 12 là nửa mặt phẳng bờ d3 chứa điểm I(1; 1).

• Vẽ đường thẳng d4: x + y = 9 bằng cách vẽ đường thẳng đi qua hai điểm (3; 6) và (4; 5).

Chọn điểm I(1; 1) ∉ d4 và thay bảo biểu thức x + y ta được 1 + 1 = 2 < 9.

Suy ra miền nghiệm của bất phương trình x + y ≤ 9 là nửa mặt phẳng bờ d4 chứa điểm I(1; 1).

• Vẽ đường thẳng d5: 45x + 15y = 315 bằng cách vẽ đường thẳng đi qua hai điểm (5; 6) và (7; 0).

Chọn điểm I(1; 1) ∉ d4 và thay bảo biểu thức 45x + 15y ta được 45 . 1 + 15. 1 = 60 < 315.

Suy ra miền nghiệm của bất phương trình 45x + 15y ≤ 315 là nửa mặt phẳng bờ d5 chứa điểm I(1; 1).

Khi đó miền nghiệm của hệ bất phương trình là miền không bị gạch như hình vẽ dưới đây

Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 12 g hương liệu, 9 lít nước và 315 g đường

Miền nghiệm của hệ là miền ngũ giác ABCDO với A(0; 6), B(4; 5), C(6; 3), D(7; 0) và O(0; 0).

Ta có F(0; 6) = 60 . 0 + 80 . 6 = 480;

F(4; 5) = 60 . 4 + 80 . 5 = 640;

F(6; 3) = 60 . 6 + 80 . 3 = 600;

F(7; 0) = 60 . 7 + 80 . 0 = 420;

F(0; 0) = 0.

Giá trị lớn nhất là F(4; 5) = 640.

Vậy cần pha 4 lít nước loại A và 5 lít nước loại B để số điểm thưởng nhận được là lớn nhất.

Xem thêm các bài giải SBT Toán 10 Kết nối tri thức hay, chi tiết khác:

Bài 3: Bất phương trình bậc nhất hai ẩn

Bài tập cuối chương 2

Bài 5: Giá trị lượng giác của một góc từ 0° đến 180°

Bài 6: Hệ thức lượng trong tam giác

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Lý thuyết KTPL 11 Bài 5 (Chân trời sáng tạo 2023): Thị trường lao động, việc làm | Lý thuyết Kinh tế Pháp luật 11

Next post

8 câu Trắc nghiệm KTPL 11 Bài 6 (Chân trời sáng tạo 2023) có đáp án: Ý tưởng và cơ hội kinh doanh | Trắc nghiệm Kinh tế Pháp luật 11

Bài liên quan:

20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10

Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10

Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới

Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10

Trắc nghiệm Toán 10 Kết nối tri thức có đáp án

Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)

Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10

Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  2. Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  3. Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới
  4. Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10
  5. Trắc nghiệm Toán 10 Kết nối tri thức có đáp án
  6. Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)
  7. Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10
  8. Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề
  9. Giáo án Toán 10 Kết nối tri thức (cả năm) mới nhất 2023
  10. Chuyên đề Toán 10 Kết nối tri thức | Giải bài tập Chuyên đề học tập Toán 10 hay, chi tiết
  11. Sách bài tập Toán 10 Kết nối tri thức | Giải SBT Toán 10 | Giải sách bài tập Toán 10 Tập 1, Tập 2 hay nhất | SBT Toán 10 Kết nối tri thức | SBT Toán 10 KNTT
  12. Tổng hợp Lý thuyết Toán lớp 10 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 10 | Tổng hợp kiến thức Toán 10 chương trình mới
  13. Giải sgk Toán 10 Kết nối tri thức | Giải Toán 10 | Giải Toán lớp 10 | Giải bài tập Toán 10 hay nhất | Giải Toán 10 Tập 1, Tập 2 Kết nối tri thức
  14. Sách bài tập Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  15. Giải SGK Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  16. 20 câu Trắc nghiệm Tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  17. Lý thuyết Tập hợp và các phép toán trên tập hợp (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  18. Bài giảng điện tử Tập hợp và các phép toán trên tập hợp | Kết nối tri thức Giáo án PPT Toán 10
  19. Giáo án Toán 10 Bài 2 (Kết nối tri thức 2023): Tập hợp và các phép toán trên tập hợp
  20. Sách bài tập Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  21. Giải SGK Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  22. 30 câu Trắc nghiệm Chương 1: Mệnh đề và tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  23. Lý thuyết Toán 10 Chương 1 (Kết nối tri thức 2023): Mệnh đề và Tập hợp hay, chi tiết
  24. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 1
  25. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  26. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  27. 20 câu Trắc nghiệm Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  28. Lý thuyết Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  29. Bài giảng điện tử Bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  30. Giáo án Toán 10 Bài 3 (Kết nối tri thức 2023): Bất phương trình bậc nhất hai ẩn
  31. Sách bài tập Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  32. Giải SGK Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  33. Lý thuyết Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  34. Bài giảng điện tử Hệ bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  35. Giáo án Toán 10 Bài 4 (Kết nối tri thức 2023): Hệ bất phương trình bậc nhất hai ẩn
  36. 20 câu Trắc nghiệm Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  37. Giải SGK Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  38. Lý thuyết Toán 10 Chương 2 (Kết nối tri thức 2023): Bất phương trình và hệ phương trình bậc nhất hai ẩn hay, chi tiết
  39. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 2
  40. 30 câu Trắc nghiệm Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  41. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  42. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  43. Lý thuyết Giá trị lượng giác của một góc từ 0 đến 180 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  44. Bài giảng điện tử Giá trị lượng giác của một góc từ 0 độ đến 180 độ | Kết nối tri thức Giáo án PPT Toán 10
  45. Giáo án Toán 10 Bài 5 (Kết nối tri thức 2023): Giá trị lượng giác của một góc từ 0 độ đến 180 độ
  46. 20 câu Trắc nghiệm Giá trị lượng giác của 1 góc từ 0° đến 180° (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  47. Sách bài tập Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0° đến 180°
  48. Giải SGK Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0 đến 180
  49. Lý thuyết Hệ thức lượng trong tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  50. Bài giảng điện tử Hệ thức lượng trong tam giác | Kết nối tri thức Giáo án PPT Toán 10
  51. Giáo án Toán 10 Bài 6 (Kết nối tri thức 2023): Hệ thức lượng trong tam giác
  52. 20 câu Trắc nghiệm Hệ thức lượng trong tam giác (Kết nối tri thức 2023) có đáp án – Toán lớp 10

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán