Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 10

Giải SGK Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn

By admin 13/10/2023 0

Giải bài tập Toán lớp 10 Bài 3: Bất phương trình bậc nhất hai ẩn

Giải Toán 10 trang 22 Tập 1 Kết nối tri thức

Câu hỏi mở đầu trang 22 Toán lớp 10: Nhân ngày Quốc tế Thiếu nhi 1-6, một rạp chiếu phim phục vụ các khán giả một bộ phim hoạt hình. Vé được bán ra có hai loại:

Loại 1 (dành cho trẻ từ 6-13 tuổi): 50 000 đồng/vé

Loại 2 (dành cho người trên 13 tuổi): 100 000 đồng/vé.

Người ta tính toán rằng, để không phải bù lỗ thì số tiền về thu được ở rạp chiếu phim này phải đạt tối thiểu 20 triệu đồng.

Hỏi số lượng vé bán được trong những trường hợp nào thì rạp chiếu phim phải bù lỗ?

Luyện tập 1 trang 6 Toán lớp 10 Tập 1 | Kết nối tri thức (ảnh 1)

Lời giải:

Gọi x là số vé loại 1 bán được và y là số vé loại 2 bán được. (x,y∈N)

Số tiền bán vé thu được là: 50000x+100000y (đồng)

Rạp chiếu phim phải bù lỗ nếu: 50000x+100000y<20000000

⇔x+2y<400

Vậy rạp chiếu phim phải bù lỗ nếu số vé mỗi loại thỏa mãn biểu thức x+2y<400.

1. Bất phương trình bậc nhất hai ẩn

HĐ1 trang 22 Toán lớp 10: Trong tình huống mở đầu, gọi x là số vé loại 1 bán được và y là số vé loại 2 bán được. Viết biểu thức tính số tiền bán vé thu được (đơn vị nghìn đồng) ở rạp chiếu phim đó theo x và y.

a) Các số nguyên không âm x và y phải thoả mãn điều kiện gì để số tiền bán vé thu được đạt tối thiểu 20 triệu đồng?

b) Nếu số tiền bán vé thu được nhỏ hơn 20 triệu đồng thì x và y thỏa mãn điều kiện gì?

Phương pháp giải:

Bước 1: Biểu diễn số tiền x vé loại 1 và y vé loại 2

Số tiền bán vé=Số vé. Số tiền 1 vé

Bước 2: Số tiền thu được=Số tiền x loại 1+ Số tiền y loại 2

a) Số tiền thu được tối thiểu 20 triệu đồng có nghĩa là số tiền thu được lớn hơn hoặc bằng 20 triệu đồng.

b) Lập bất phương trình về số tiền nhỏ hơn 20 triệu đồng.

Lời giải:

Bước 1:

Số tiền bán x vé loại 1 là: x.50000 (đồng)

Số tiền bán y vé loại 2 là: y.100000 (đồng)

Bước 2:

Số tiền thu được là

50000x+100000y (đồng)

a)

Ta có 20 triệu = 20 000 000=2.107 (đồng)

Số tiền thu được khi bán x vé loại 1 và y vé loại 2 là 50000x+100000y (đồng)

Nên để số tiền thu được tối thiểu 20 triệu thì ta cần:

50000x+100000y≥2.107⇔x+2y≥400

Vậy các số nguyên không âm x và y phải thỏa mãn điều kiện x+2y≥400

b)

Ta có 20 triệu = 20 000 000=2.107 (đồng)

Số tiền thu được khi bán x vé loại 1 và y vé loại 2 là 50000x+100000y (đồng)

Số tiền thu được nhỏ hơn 20 triệu thì:

50000x+100000y<2.107⇔x+2y<400

Chú ý:

– Số tiền tối thiểu thì ta phải lập bất phương trình với dấu “≥”.

– Cần đổi 20 triệu đồng thành 20 000 000 đồng tránh lập sai bất phương trình.

Giải Toán 10 trang 23 Tập 1 Kết nối tri thức

HĐ2 trang 23 Toán lớp  10: Cặp số (x; y) = (100; 100) thoả mãn bất phương trình bậc nhất hai ẩn nào trong hai bất phương trình thu được ở HĐ1? Từ đó cho biết rạp chiếu phim có phải bù lỗ hay không nếu bán được 100 vé loại 1 và 100 vé loại 2.

Trả lời câu hỏi tương tự với cặp số (x; y) = (150; 150).

Phương pháp giải:

Bước 1:

– Thay x=100 và y=100 vào từng bất phương trình, nếu bất phương trình nào đúng có nghĩa là cặp số (x;y)=(100;100) thỏa mãn bất phương trình đó.

– Nếu sau khi thay, cặp số thỏa mãn bất phương trình thứ nhất thì không phải bù lỗ, thỏa mãn bất phương trình thứ hai thì phải bù lỗ.

Bước 2:

– Thay x=150 và y=150 vào từng bất phương trình, nếu bất phương trình nào đúng có nghĩa là cặp số (x;y)=(150;150) thỏa mãn bất phương trình đó.

– Nếu sau khi thay, cặp số thỏa mãn bất phương trình thứ nhất thì không phải bù lỗ, thỏa mãn bất phương trình thứ hai thì phải bù lỗ.

Lời giải:

Bước 1:

Từ HĐ 1 ta có hai bất phương trình:

x+2y≥400(1) và x+2y<400(2)

Thay x=100 và y=100 vào bất phương trình (1) ta được:

100+2.100≥400⇔300≥400 (Vô lí)

=> Cặp số (x;y)=(100;100) không thỏa mãn bất phương trình (1).

Thay x=100 và y=100 vào bất phương trình (2) ta được:

100+2.100<400⇔300<400 (Đúng)

=> Cặp số (x;y)=(100;100) thỏa mãn bất phương trình (2).

Cặp số (x;y)=(100;100) thỏa mãn bất phương trình (2) có nghĩa là nếu bán được 100 vé loại 1 và 100 vé loại 2 thì rạp chiếu phim phải bù lỗ.

Bước 2:

Thay x=150 và y=150 vào bất phương trình (1) ta được:

150+2.150≥400⇔450≥400 (Đúng)

=> Cặp số (x;y)=(150;150) thỏa mãn bất phương trình (1).

Thay x=150 và y=150 vào bất phương trình (2) ta được:

150+2.150<400⇔450<400 (Vô lí)

=> Cặp số (x;y)=(150;150) không thỏa mãn bất phương trình (2).

Cặp số (x;y)=(150;150) thỏa mãn bất phương trình (1) có nghĩa là nếu bán được 150 vé loại 1 và 150 vé loại 2 thì rạp chiếu phim không phải bù lỗ.

Chú ý:

Khi thay cặp số (x;y)=(100;100) vào các bất phương trình bài cho đồng nghĩa với rạp chiếu phim bán được 100 vé loại 1 và 100 vé loại 2.

Luyện tập 1 trang 23 Toán lớp 10: Cho bất phương trình bậc nhất hai ẩn x+2y≥0.

b) Với y=0, có bao nhiêu giá trị của x thỏa mãn bất phương trình đã cho?

Phương pháp giải:

a) Thử các giá trị x và y và thay vào bất phương trình x+2y≥0, nếu bất phương trình đúng thì cặp (x;y) đó là một nghiệm của bất phương trình.

b) Thay y=0 vào bất phương trình x+2y≥0 sau đó tìm các giá trị của x.

Lời giải:

a)

+) Ta thử với cặp số (x;y)=(0;0):

Thay x=0 và y=0 vào bất phương trình x+2y≥0, ta được: (Đúng)

0+2.0≥0⇔0≥0(Đúng)

=> (0;0) là một nghiệm của bất phương trình x+2y≥0

+) Ta thử với cặp số (1;1):

Thay x=1, y=1 vào bất phương trình x+2y≥0 ta được:

1+2.1≥0⇔3≥0(Đúng)

=>  (1;1) là một nghiệm của bất phương trình x+2y≥0

Như thế ta đã tìm được 2 nghiệm của bất phương trình đã cho là (0;0) và (1;1).

b)

Thay y=0 vào bất phương trình x+2y≥0 ta được:

x+2.0≥0⇔x≥0

Ta thấy bất phương trình bài cho tương đương với bất phương trình nên số giá trị của x thỏa mãn bất phương trình đã cho là số x thỏa mãn điều kiện .

Mà ta có vô số giá trị của x thỏa mãn nên có vô số giá trị của x thỏa mãn bất phương trình đã cho.

Chú ý:

Ta có thể thử các cặp số khác đối với câu a, miễn là cặp số đấy làm cho bất phương trình đúng.

2. Biểu diễn miền nghiệm của bất phương trình bật nhất hai ẩn trên mặt phẳng tọa độ

HĐ3 trang 22 Toán lớp 10: Cho đường thẳng d: 2x – y = 4 trên mặt phẳng toạ độ Oxy (H.2.1). Đường thẳng này chia mặt phẳng thành hai nửa mặt phẳng.

a) Các điểm 0,0; 0), A(-1; 3) và B(-2; -2) có thuộc cùng một nửa mặt phẳng bờ là đường thẳng d không?

Tính giá trị của biểu thức 2x – y tại các điểm đó và so sánh với 4.

b) Trả lời câu hỏi tương tự như câu a với các điểm C(3; 1), D(4; -1).

Luyện tập 1 trang 23 Toán lớp 10 Tập 1 | Kết nối tri thức (ảnh 4)

Phương pháp giải:

a)

Bước 1: Quan sát hình vẽ, nếu O, A, B nằm cùng một phía so với đường thẳng d thì 3 điểm đó cùng thuộc một nửa mặt phẳng bờ là đường thẳng d.

Bước 2: Thay tọa độ các điểm O, A, B vào biểu thức 2x-y và so sánh các giá trị tìm được với 4.

b)

Bước 1: Quan sát hình vẽ, nếu C, D nằm cùng một phía so với đường thẳng d thì 2 điểm đó cùng thuộc một nửa mặt phẳng bờ là đường thẳng d.

Bước 2: Thay tọa độ các điểm C, D vào biểu thức 2x-y và so sánh các giá trị tìm được với 4.

Lời giải:

a)

Luyện tập 1 trang 23 Toán lớp 10 Tập 1 | Kết nối tri thức (ảnh 3)

Bước 1:

Quan sát hình trên, các điểm A, O, B là các điểm được bôi vàng, và các điểm đó cùng nằm một phía (bên trái) nên chúng thuộc cùng một nửa mặt phẳng bờ là đường thẳng d.

Bước 2:

+) Thay tọa độ của điểm O(0;0) vào biểu thức 2x-y ta được: 2.0-0=0.

Như vậy giá trị của biểu thức 2x-y tại O là 0 và 0<4.

+) Thay tọa độ của điểm A(-1;3) vào biểu thức 2x-y ta được: 2.(-1)-3=-5.

Như vậy giá trị của biểu thức 2x-y tại A là -5 và -5<4

+) Thay tọa độ của điểm B(-2;-2) vào biểu thức 2x-y ta được: 2.(-2)-(-2)=-2.

Như vậy giá trị của biểu thức 2x-y tại B là -2 và -2<4.

b) 

Luyện tập 1 trang 23 Toán lớp 10 Tập 1 | Kết nối tri thức (ảnh 1)

Bước 1:

Quan sát hình trên, các điểm C, D là các điểm được bôi vàng, và các điểm đó cùng nằm một phía (bên phải) nên chúng thuộc cùng một nửa mặt phẳng bờ là đường thẳng d.

Bước 2:

+) Thay tọa độ của điểm C(3;1) vào biểu thức 2x-y ta được: 2.3-1=5.

Như vậy giá trị của biểu thức 2x-y tại C là 5 và 5>4.

+) Thay tọa độ của điểm D(4;-1) vào biểu thức 2x-y ta được: 2.4-(-1)=9.

Như vậy giá trị của biểu thức 2x-y tại D là 9 và 9>4

Chú ý:

Khi thay tọa độ các điểm vào biểu thức 2x-y, nếu y là một giá trị âm thì cần đưa nguyên dấu vào trong biểu thức.

Giải Toán 10 trang 24 Tập 1 Kết nối tri thức

Luyện tập 2 trang 24 Toán lớp 10: Biểu diễn miền nghiệm của bất phương trình 2x+y

Phương pháp giải:

Ta biểu diễn miền nghiệm của bất phương trình bậc nhất hai ẩn ax+b

Bước 1: Vẽ đường thẳng (nét đứt).

Bước 2: Lấy một điểm bất kì không thuộc d trên mặt phẳng rồi thay vào biểu thức ax+b. Xác định c có bằng 0 hay không, nếu c khác 0 thì ta lấy điểm để thay vào là gốc O(0;0).

Nếu O thỏa mãn bất phương trình thì miền nghiệm của bất phương trình đã cho là nửa mặt phẳng bờ d chứa điểm đã lấy.

Lời giải:

HĐ3 trang 22 Toán lớp 10 Tập 1 | Kết nối tri thức (ảnh 1)

Ta biểu diễn miền nghiệm của bất phương trình bậc nhất hai ẩn 2x+y

Bước 1: Vẽ đường thẳng d: 2x+y=200 trên mặt phẳng tọa độ Oxy.

Bước 2: Lấy một điểm bất kì không thuộc d trên mặt phẳng rồi thay vào biểu thức 2x+y. Chẳng hạn, lấy O(0;0), ta có: 2.0+0<200

Do đó miền nghiệm của bất phương trình đã cho là nửa mặt phẳng bờ d chứa gốc tọa độ. (miền không bị gạch).

Chú ý:

Miền nghiệm của bất phương trình 2x+y

Giải Toán 10 trang 25 Tập 1 Kết nối tri thức

Vận dụng trang 25 Toán lớp 10: Một công ty viễn thông tính phí 1 nghìn đồng mỗi phút gọi nội mạng và 2 nghìn đồng mỗi phút gọi ngoại mạng. Em có thể sử dụng bao nhiêu phút gọi nội mạng và bao nhiêu phút gọi ngoại mạng trong một tháng nếu em muốn số tiền phải trả ít hơn 200 nghìn đồng?

Phương pháp giải:

Bước 1: Gọi x là số phút gọi nội mạng (x∈N), y là số phút gọi ngoại mạng (y∈N) và biến đổi bài toán đã cho thành bài toán tìm miền nghiệm của bất phương trình.

Bước 2: Xác định miền nghiệm.

Lời giải:

Luyện tập 2 trang 24 Toán lớp 10 Tập 1 | Kết nối tri thức (ảnh 1)

Bước 1:

Gọi x là số phút gọi nội mạng (x∈N), y là số phút gọi ngoại mạng (y∈N)

Số tiền cần phải trả là x+2y nghìn đồng.

Để số tiền phải trả ít hơn 200 nghìn đồng thì x+2y<200.

Như vậy, bài toán trở thành tìm miền nghiệm của bất phương trình x+2y<200

Bước 2:

Xác định miền nghiệm:

+ Vẽ đường thẳng d: x+2y=200 (nét đứt).

+ Thay tọa độ O(0;0) vào biểu thức x+2y ta được 0+2.0=0<200

=> Miền nghiệm của bất phương trình là nửa mặt phẳng bờ d chứa gốc tọa độ không kể đường thẳng d.

Vậy nếu số phút sử dụng nội mạng là x và ngoại mạng là y mà điểm (x;y) nằm trong miền tam giác OAB không kể đoạn AB thì số tiền phải trả thấp hơn 200 nghìn đồng.

Chú ý:

x và y là số tự nhiên nên cần lấy phần không âm của trục Ox và phần không âm của trục Oy.

Bài tập

Bài 2.1 trang 25 Toán lớp 10: Bất phương trình nào sau đây là bất phương tình bậc nhất hai ẩn?

a) 2x+3y > 6

b) 22x+y≤0

c) 2x2−y≥1

Phương pháp giải:

Dạng tổng quát của bất phương trình bậc nhất hai ẩn là một trong 4 dạng:

ax+by≤c (ax+by≥c, ax+by<c, ax+by>c)

Trong đó a, b, c là những số thực cho trước, a và b không đồng thời bằng 0, x và y là các ẩn số.

Lời giải:

a) Ta có hệ số a=2, b=3, c=6 và các ẩn là x và y.

=> bất phương trình 2x+3y>6 là bất phương trình bậc nhất hai ẩn.

b) Ta có 22x+y≤0⇔4x+y≤0

=> a=4,b=1 và c=0. Các ẩn là x và y

=> 22x+y≤0 là bất phương trình bậc nhất hai ẩn.

c) 2x2−y≥1 có bậc của x là 2 nên đây không là bất phương trình bậc nhất hai ẩn.

Chú ý:

Khi bậc của x và y lớn hơn 1 thì bất phương trình bài cho không là bất phương trình bậc nhất hai ẩn.

Bài 2.2 trang 25 Toán lớp 10: Biểu diễn miền nghiệm của mỗi bất phương trình sau trên mặt phẳng tọa độ:

a) 3x+2y≥300

b) 7x+20y<0

Phương pháp giải:

a) Ta biểu diễn miền nghiệm của bất phương trình bậc nhất hai ẩn ax+by≥c như sau:

Bước 1: Vẽ đường thẳng (nét liền).

Bước 2: Lấy một điểm bất kì không thuộc d trên mặt phẳng rồi thay vào biểu thức ax+b. Xác định c có bằng 0 hay không, nếu c khác 0 thì ta lấy điểm để thay vào là gốc O(0;0).

Nếu O không thỏa mãn bất phương trình thì miền nghiệm của bất phương trình đã cho là nửa mặt phẳng bờ d không chứa điểm đã lấy.

b) Ta biểu diễn miền nghiệm của bất phương trình bậc nhất hai ẩn ax+b

Bước 1: Vẽ đường thẳng (nét đứt).

Bước 2: Lấy một điểm bất kì không thuộc d trên mặt phẳng rồi thay vào biểu thức ax+b. Xác định c có bằng 0 hay không, nếu c = 0 thì ta lấy điểm A(-1;-1) để thay vào.

Nếu A thỏa mãn bất phương trình thì miền nghiệm của bất phương trình đã cho là nửa mặt phẳng bờ d chứa điểm A đã lấy.

Lời giải:

a)

 Bài 2.1 trang 25 Toán lớp 10 Tập 1 | Kết nối tri thức (ảnh 3)

Bước 1: Vẽ đường thẳng 3x+2y=300

Bước 2: Thay tọa độ điểm O(0;0) vào 3x+2y ta được 3.0+2.0<300

=> Điểm O không thuộc miền nghiệm.

=> Miền nghiệm của bất phương trình là nửa mặt phẳng có bờ 3x+2y=300 và không chứa điểm O.

b)

 Bài 2.1 trang 25 Toán lớp 10 Tập 1 | Kết nối tri thức (ảnh 1)

Bước 1: Vẽ đường thẳng 7x+20y=0 (nét đứt)

Bước 2: Vì c=0 nên ta thay tọa độ điểm A(-1;-1) vào biểu thức 7x+20y ta được:

7.(-1)+20.(-1)=-27<0

=> Điểm A thuộc miền nghiệm

=> Miền nghiệm là nửa mặt phẳng bờ là đường thẳng 7x+20y=0 và không chứa điểm A (không kể đường thẳng 7x+20y=0)

Bài 2.3 trang 25 Toán lớp 10: Ông An muốn thuê một chiếc ô tô (có lái xe) trong một tuần. Giá thuê xe được cho như bảng sau:

  (ảnh 1)

a) Gọi x và y lần lượt là số kilômét ông An đi trong các ngày từ thứ Hai đến thứ Sáu và

trong hai ngày cuối tuần. Viết bất phương trình biểu thị mối liên hệ giữa x và y sao cho

tổng số tiền ông An phải trả không quá 14 triệu đồng.

b) Biểu diễn miền nghiệm của bất phương trình ở câu a trên mặt phẳng toạ độ.

Phương pháp giải:

a) Biểu diễn số tiền ông An phải trả theo số kilômét. Số tiền không quá 14 triệu tức là nhỏ hơn hoặc bằng 14 triệu

b) Ta biểu diễn miền nghiệm của bất phương trình bậc nhất hai ẩn ax+by≤c như sau:

Bước 1: Vẽ đường thẳng (nét liền).

Bước 2: Lấy một điểm bất kì không thuộc d trên mặt phẳng rồi thay vào biểu thức ax+b. Xác định c có bằng 0 hay không, nếu c khác 0 thì ta lấy điểm để thay vào là gốc O(0;0).

Nếu O thỏa mãn bất phương trình thì miền nghiệm của bất phương trình đã cho là nửa mặt phẳng bờ d chứa điểm đã lấy.

Lời giải:

a)

Ta có 14 triệu = 14 000 (nghìn đồng)

Số tiền ông An đi x km trong các ngày từ thứ Hai đến thứ Sáu là 8x (nghìn đồng)

Số tiền ông An đi y km trong 2 cuối tuần là 10y (nghìn đồng)

Số tiền ông An đi trong một tuần là 8x+10y (nghìn đồng)

Vì số tiền không quá 14 triệu đồng nên ta có :

8x+10y≤14000⇔4x+5y≤7000

Vậy bất phương trình cần tìm là 4x+5y≤7000

b)

  (ảnh 2)

Bước 1: Vẽ đường thẳng 4x+5y=7000(nét liền)

Bước 2: Thay tọa độ điểm O(0;0) vào biểu thức 4x+5y ta được:

4.0+5.0=0<7000

=> Điểm O thuộc miền nghiệm

=> Miền nghiệm là nửa mặt phẳng bờ là đường thẳng 4x+5y=7000 và chứa gốc tọa độ và (x;y) nằm trong miền tam giác OAB kể cả đoạn AB.

Chú ý:

Khi bài cho số ki lô mét thì ta cần tính theo quãng đường di chuyển.

Xem thêm các bài giải SGK Toán 10 Kết nối tri thức hay, chi tiết khác:

Bài tập cuối chương 1

Bài 4: Hệ bất phương trình bậc nhất hai ẩn

Bài tập cuối chương 2

Bài 5: Giá trị lượng giác của một góc từ 0 đến 180

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Top 100 Đề thi KTPL lớp 11 Kết nối tri thức năm học 2023 – 2024 mới nhất

Next post

Sách bài tập Toán 6 Bài 9 (Kết nối tri thức): Dấu hiệu chia hết

Bài liên quan:

20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10

Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10

Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới

Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10

Trắc nghiệm Toán 10 Kết nối tri thức có đáp án

Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)

Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10

Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  2. Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  3. Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới
  4. Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10
  5. Trắc nghiệm Toán 10 Kết nối tri thức có đáp án
  6. Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)
  7. Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10
  8. Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề
  9. Giáo án Toán 10 Kết nối tri thức (cả năm) mới nhất 2023
  10. Chuyên đề Toán 10 Kết nối tri thức | Giải bài tập Chuyên đề học tập Toán 10 hay, chi tiết
  11. Sách bài tập Toán 10 Kết nối tri thức | Giải SBT Toán 10 | Giải sách bài tập Toán 10 Tập 1, Tập 2 hay nhất | SBT Toán 10 Kết nối tri thức | SBT Toán 10 KNTT
  12. Tổng hợp Lý thuyết Toán lớp 10 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 10 | Tổng hợp kiến thức Toán 10 chương trình mới
  13. Giải sgk Toán 10 Kết nối tri thức | Giải Toán 10 | Giải Toán lớp 10 | Giải bài tập Toán 10 hay nhất | Giải Toán 10 Tập 1, Tập 2 Kết nối tri thức
  14. Sách bài tập Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  15. Giải SGK Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  16. 20 câu Trắc nghiệm Tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  17. Lý thuyết Tập hợp và các phép toán trên tập hợp (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  18. Bài giảng điện tử Tập hợp và các phép toán trên tập hợp | Kết nối tri thức Giáo án PPT Toán 10
  19. Giáo án Toán 10 Bài 2 (Kết nối tri thức 2023): Tập hợp và các phép toán trên tập hợp
  20. Sách bài tập Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  21. Giải SGK Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  22. 30 câu Trắc nghiệm Chương 1: Mệnh đề và tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  23. Lý thuyết Toán 10 Chương 1 (Kết nối tri thức 2023): Mệnh đề và Tập hợp hay, chi tiết
  24. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 1
  25. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  26. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  27. 20 câu Trắc nghiệm Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  28. Lý thuyết Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  29. Bài giảng điện tử Bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  30. Giáo án Toán 10 Bài 3 (Kết nối tri thức 2023): Bất phương trình bậc nhất hai ẩn
  31. Sách bài tập Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  32. Lý thuyết Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  33. Bài giảng điện tử Hệ bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  34. Giáo án Toán 10 Bài 4 (Kết nối tri thức 2023): Hệ bất phương trình bậc nhất hai ẩn
  35. 20 câu Trắc nghiệm Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  36. Sách bài tập Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  37. Giải SGK Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  38. Lý thuyết Toán 10 Chương 2 (Kết nối tri thức 2023): Bất phương trình và hệ phương trình bậc nhất hai ẩn hay, chi tiết
  39. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 2
  40. 30 câu Trắc nghiệm Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  41. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  42. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  43. Lý thuyết Giá trị lượng giác của một góc từ 0 đến 180 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  44. Bài giảng điện tử Giá trị lượng giác của một góc từ 0 độ đến 180 độ | Kết nối tri thức Giáo án PPT Toán 10
  45. Giáo án Toán 10 Bài 5 (Kết nối tri thức 2023): Giá trị lượng giác của một góc từ 0 độ đến 180 độ
  46. 20 câu Trắc nghiệm Giá trị lượng giác của 1 góc từ 0° đến 180° (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  47. Sách bài tập Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0° đến 180°
  48. Giải SGK Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0 đến 180
  49. Lý thuyết Hệ thức lượng trong tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  50. Bài giảng điện tử Hệ thức lượng trong tam giác | Kết nối tri thức Giáo án PPT Toán 10
  51. Giáo án Toán 10 Bài 6 (Kết nối tri thức 2023): Hệ thức lượng trong tam giác
  52. 20 câu Trắc nghiệm Hệ thức lượng trong tam giác (Kết nối tri thức 2023) có đáp án – Toán lớp 10

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán