Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 10

20 câu Trắc nghiệm Phương trình đường thẳng (Kết nối tri thức 2023) có đáp án – Toán lớp 10

By admin 14/10/2023 0

Trắc nghiệm Toán 10 Bài 19: Phương trình đường thẳng

I. Nhận biết

Câu 1. Cho đường thẳng ∆: 3x – 4y + 5 = 0. Hệ số góc của đường thẳng d là:

A. k = 3;               

B. k = – 4;          

C. k=34;           

D. k=43.

Hướng dẫn giải

Đáp án: C

Giải thích:

Đường thẳng ∆ có phương trình: 3x – 4y + 5 = 0 ⇔ 4y = 3x + 5 ⇔ y = 34x + 54.

Khi đó hệ số góc k của đường thẳng ∆ là: 34. Do đó C đúng.

Câu 2. Phương trình tham số của đường thẳng d đi qua điểm A(2; 3) và nhận u→1;−1 làm vectơ chỉ phương là:

A. x=2+ty=3−t;                 

B. x=1+2ty=−1+3t;  

C. x – y + 1 = 0; 

D. x + y – 5 = 0.

Hướng dẫn giải

Đáp án: A

Giải thích:

Phương trình tham số của đường thẳng d đi qua điểm A(2; 3) và nhận u→1;−1 làm vectơ chỉ phương là: x=2+ty=3−t.

Câu 3. Cho đường thẳng (d): 2x + 3y – 4 = 0. Vectơ nào sau đây là vectơ pháp tuyến của (d)?

A. n→=(2;3);         

B. n→=(3;−2);     

C. n→=(2;−3);    

D. n→=(−2;3).

Hướng dẫn giải

Đáp án: A

Giải thích:

Ta có phương trình đường thẳng (d): 2x + 3y – 4 = 0

⇒ Vectơ pháp tuyến n→=(2;3).

Câu 4. Cho đường thẳng ∆ có một vectơ chỉ phương là u→(−3;5). Vectơ nào dưới đây không phải là vectơ pháp tuyến của ∆.

A. n1→=(−3;5);               

B. n2→=(5;3);     

C. n3→=(−5;−3);

D. n→52;32.

Hướng dẫn giải

Đáp án: A

Giải thích:

Đường thẳng ∆ có một vectơ chỉ phương là u→(−3;5) nên vectơ pháp tuyến là   n→(5;3) hay là k  với k ∈ ℝ.

Ta có: n2→=n→,  n3→=−n→,  n4→=12n→. Do đó n2→,n3→ và n4→ là vectơ pháp tuyến của đường thẳng ∆.

Do đó n1→ không phải vectơ pháp tuyến của đường thẳng ∆.

Vậy chọn đáp án A.

Câu 5. Vectơ chỉ phương của đường thẳng đi qua hai điểm A(2; 3) và B(4; 1) là:

A. u→(1;−1);           

B. u→(6;−4);        

C. u→(2;2);          

D. u→(1;1).

Hướng dẫn giải

Đáp án: A

Giải thích:

Ta có: AB→=(2;−2)

Chọn vectơ chỉ phương của đường thẳng AB:  u→=12AB→=(1;−1)

Câu 6. Vectơ chỉ phương có giá:

A. Song song hoặc vuông góc với đường thẳng;               

B. Song song hoặc trùng nhau với đường thẳng;       

C. Vuông góc hoặc trùng nhau với đường thẳng;      

D. Cắt đường thẳng đã cho tại một điểm.

Hướng dẫn giải

Đáp án: B

Giải thích:

Vectơ chỉ phương có giá song song hoặc trùng với đường thẳng đã cho.

Câu 7. Có bao nhiêu vectơ pháp tuyến của một đường thẳng?

A. 0; 

B. 1;

C. 2;

D. Vô số.

Hướng dẫn giải

Đáp án: D

Giải thích:

Nếu là n→ vectơ pháp tuyến của đường thẳng thì kn→ (k ≠ 0) cũng là vectơ pháp tuyến của đường thẳng đó. Do đó một đường thẳng có vô số vectơ pháp tuyến.

II. Thông hiểu

Câu 1. Cho tam giác ABC có A(−2; 3), B(1; −2), C(−5; 4). Gọi M là trung điểm của BC. Phương trình tham số của đường trung tuyến AM của ∆ABC là:

A. x=2y=3−2t;                

B. x=−2−4ty=3−2t; 

C. x=−2ty=−2+3t; 

D. x=−2y=3−2t.

Hướng dẫn giải

Đáp án: D

Giải thích:

Vì M là trung điểm của đoạn thẳng BC nên ta có:

 xM=xB+xC2yM=yB+yC2⇒ xM=1+(−5)2=−2yM=(−2)+42=1⇒ M(−2;1)

Suy ra AM→=(0;−2)

Vậy phương trình tham số của đường trung tuyến AM đi qua điểm A và nhận vectơ AM→ làm vectơ chỉ phương là: x=−2y=3−2t.

Câu 2. Cho tam giác ABC có A(2; −1); B(4; 5) và C(−3; 2). Phương trình đường cao kẻ từ C của tam giác ABC là:

A. x + y – 1 = 0;             

B. x + 3y – 3 = 0;

C. 3x + y + 11 = 0;                        

D. 3x – y + 11 = 0.

Hướng dẫn giải

Đáp án: B

Giải thích:

Ta có: AB→=(2;6)

Gọi CC’ là đường cao của ∆ABC nên CC’ có vectơ pháp tuyến n→=12AB→=(1;3)

Vậy phương trình đường thẳng CC ‘ đi qua điểm C(−3; 2) và có vectơ pháp tuyến n→(1;3) là: 1(x + 3) + 3(y – 2) = 0.

⇔ x + 3y – 3 = 0.

Câu 3. Cho hai điểm A(1; −4) và B(5; 2), đường trung trực của đoạn thẳng AB có phương trình là:

A. 2x + 3y – 3 = 0;         

B. 3x + 2y + 1 = 0;                         

C. 3x – y + 4 = 0;                           

D. x + y + 1 = 0.

Hướng dẫn giải

Đáp án đúng là: A

Gọi M là trung điểm  và d là đường trung trực của đoạn thẳng AB

⇒ xM=1+52=3yM=−4+22=−1 ⇒M(3; −1)

Ta có: AB→=(4;6)

Vì d là đường trung trực của đoạn thẳng AB nên d đi qua điểm M(3; −1) và có vectơ pháp tuyến n→=12AB→=(2;3), phương trình đường thẳng d là:

2(x – 3) + 3(y + 1) = 0 ⇔ 2x + 3y – 3 = 0.

Câu 4. Viết phương trình tham số của đường thẳng đi qua hai điểm A(−1; 3)  và B(3; 1)

A. x=−1+2ty=3+t;              

B. x=−1−2ty=3−t; 

C. x=3+2ty=1+t;   

D. x=−1+2ty=3−t.

Hướng dẫn giải

Đáp án: D

Giải thích:

Ta có: AB→=(4;−2).

Chọn vectơ chỉ phương u→=12AB→ = (2; −1).

Do đó, phương trình đường thẳng đi qua điểm A(−1; 3) và nhận u→(2;−1) làm vectơ chỉ phương là: x=−1+2ty=3−t.

Câu 5. Cho đường thẳng d có phương trình tham số là: x=3+ty=4−2t. Khi đó phương trình tổng quát của đường thẳng d là:

A. x – 2y + 5 = 0;                                                      

B. 3x + 4y + 5 = 0;                         

C. 2x + y – 10 = 0 ;                        

D. x – 2y – 5 = 0.

Hướng dẫn giải

Đáp án: C

Giải thích:

Cách 1: Từ phương trình tham số của đường thẳng d ta có đường thẳng d đi qua điểm M(3; 4) và có vectơ chỉ phương u→(1;−2) nên có vectơ pháp tuyến là n→(2;1). Khi đó phương trình tổng quát của đường thẳng d là: 2.(x – 3) + (y – 4) = 0 ⇔ 2x + y – 10 = 0.

Cách 2: Xét phương trình tham số x=3+ty=4−2t⇔t=x−3t=y−4−2.

⇔x−3=y−4−2⇔−2x−3=y−4⇔2x+y−10=0

Vậy phương trình tổng quát của đường thẳng d là: 2x + y – 10 = 0.

Câu 6. Cho đường thẳng ∆ có phương trình 3x – 4y + 2 = 0. Điểm nào sau đây không nằm trên đường thẳng ∆?

A. M1(2;2);          

B. M2(3;4);        

C. M3(−2;−1);   

D. M40;12.

Hướng dẫn giải

Đáp án: B

Giải thích:

+ Xét điểm M1(2;2)

Với x = 2 và y = 2 ta có: 3.2 – 4.2 + 2 = 0 nên M1 ∈ ∆.

+ Xét điểm M2(3;4)

Với x = 3 và y = 4 ta có: 3.3 – 4.4 + 2 = – 5 ≠ 0 nên M2 ∉ ∆.

+ Xét điểm M3(−2;−1)

Với x = −2 và y = −1 ta có: 3.( −2) – 4.( −1) + 2 = 0  nên M3 ∈ ∆.

+ Xét điểm M40;12

Với x = 0 và y = 12ta có: 3.0 – 4.12 + 2 = 0  nên M4 ∈ ∆.

Vậy điểm M2 không thuộc đường thẳng ∆

Câu 7. Phương trình đường thẳng d đi qua điểm M(−2; 3) và song song với đường thẳng EF với E(0; −1), F(−3; 0) là: 

A. x=−2−ty=3+3t;               

B. x=−2+3ty=3+t; 

C. x=−2−3ty=3+t; 

D. x=−2−ty=3−3t.

Hướng dẫn giải

Đáp án: C

Giải thích:

Ta có: EF→=(−3;1)

Vì đường thẳng d song song với đường thẳng EF nên đường thẳng d nhận vectơ EF→ làm vectơ chỉ phương

Vậy phương trình tham số của đường thẳng d đi qua điểm M(−2; 3) nhận EF→=(−3;1) làm vectơ chỉ phương là: x=−2−3ty=3+t.

Câu 8. Cho đường thẳng ∆ có phương trình tổng quát là x + 2y + 5 = 0. Phương trình tham số của đường thẳng ∆ là:

A. x=1+ty=−3+2t;             

B. x=1+2ty=−3−t;   

C. 2x – y – 5 = 0;

D. x + 2y + 5 = 0.

Hướng dẫn giải

Đáp án: B

Giải thích:

Đường thẳng ∆ có vectơ pháp tuyến là n→=(1;2). Do đó vectơ chỉ phương của đường thẳng ∆ là u→=(2;−1).

Chọn x = 1 ⇒ y = – 3. Ta có điểm M(1; – 3) là điểm thuộc đường thẳng ∆.

Vậy phương trình tham số của đường thẳng ∆ là: x=1+2ty=−3−t.

III. Vận dụng

Câu 1. Trong hệ trục toạ độ Oxy cho hai điểm A(−2; 2); B(4; –6) và đường thẳng d : x=ty=1+2t. Tìm điểm M thuộc d sao cho M cách đều hai điểm A, B

A. M(3; 7);           

B. M(–3; –5);     

C. M(2; 5);         

D. M(–2; –3).

Hướng dẫn giải

Đáp án: B

Giải thích:

Do M ∈ d nên M(t; 1 + 2t)

Theo giả thiết M cách đều hai điểm A, B nên MA = MB

⇔ (t+2)2+(2t−1)2  = (t−4)2+(2t+7)2

⇔  (t+2)2+(2t−1)2 = (t−4)2+(2t+7)2

⇔ t2 + 4t + 4 + 4t2 – 4t + 1 = t2 – 8t + 16 + 4t2 + 28t + 49

⇔ 5t +15 = 0

⇔ t = −3

Với t = −3 thì M(−3; −5)

Câu 2. Cho điểm A(−1; 0); B(1; 2); C(3; 3). Tìm điểm D thuộc đường thẳng AB sao cho CD = 5

A. D(-1; 0);           

B. D(6; 7);          

C. D1(-1; 0) , D2(6; 7);                   

D. D1(-1; 0) , D2(6; 7); D3(0; 0).

Hướng dẫn giải

Đáp án: C

Giải thích:

Ta có:  AB→=(2;2) = 2(1; 1)

Đường thẳng AB nhận vectơ u→=(1;1) làm vectơ chỉ phương.

Phương trình tham số của đường thẳng đi qua điểm A(−1; 0) và nhận vectơ u→(1;1) làm vectơ chỉ phương là: x=−1+ty=t.

Vì điểm D thuộc đường thẳng AB nên toạ độ điểm M có dạng D(−1 + t; t).

Ta có: CD = (t−4)2+(t−3)2 = 5

       ⇔  (t−4)2+(t−3)2 = 25

      ⇔ 2t2 – 14t = 0

      ⇔ t=0t=7.

Với 2 giá trị của t tương ứng có 2 toạ độ của điểm D thoả mãn là: D1(− 1; 0) , D2(6; 7).        

Câu 3. Cho hình vuông ABCD có A(2;1); C(4; 5). Phương trình đường chéo BD là:

A. 3x + 2y + 17 = 0;                                                  

B. x + y – 11 = 0;

C. x + 2y + 9 = 0;                          

D. x + 2y – 9 = 0.

Hướng dẫn giải

Đáp án: D

Giải thích:

Gọi I là trung điểm của AC nên I(3; 3)

Theo tính chất của hình vuông ta có: AC ∩ BD = I

⇒ Điểm I(3; 3) thuộc BD

Ta có: AC→=(2;4)

Mặt khác ta có: AC vuông góc với BD ( Vì ABCD là hình vuông) nên đường chéo BD nhận AC→ làm vectơ pháp tuyến,

Vậy phương trình đường chéo BD đi qua điểm I(3; 3) và có n→=12AC→=(1;2)làm vectơ pháp tuyến là: 1(x – 3) + 2(y – 3) = 0 ⇔ x + 2y – 9 = 0.

Câu 4. Trong mặt phẳng Oxy cho điểm A(2; 3) và hai đường thẳng d1: x + y + 5 = 0 và d2: x + 2y – 7 = 0. Gọi B(x1; y1) ∈ d1, C(x2; y2) ∈ d2 sao cho tam giác ABC nhận điểm G(2; 0) là trọng tâm. Tính giá trị biểu thức: T = x1x2 + y1y2.

A. T = − 21;          

B.  T = − 9;        

C.  T = 9;           

D. T = 12.

Hướng dẫn giải

Đáp án: B

Giải thích:

Vì B(x1; y1) ∈ d1 ⇒ B(– 5 – y1; y1)

Tương tự ta có: C( 7 – 2y2; y2)

Vì tam giác ABC nhận điểm G(2; 0) là trọng tâm nên

xA+xB+xC=3xGyA+yB+yC=3yG 

⇒2+(−5−y1)+(7−2y2)=63+y1+y2=0

⇔  y1+2y2=−2y1+y2=−3

⇒  y1=−4y2=1

⇒ x1=−1x2=5

Vậy T = (− 1).5 + (−4).1= −9.

Câu 5. Trong mặt phẳng Oxy, cho hình vuông ABCD có A(– 1; 0) và B(1; 2). Tìm tọa độ của điểm C biết rằng hoành độ của điểm C là số dương.

A. C(3; 0);            

B. C(– 1; 4);       

C. C(3; 0) và C(– 1; 4);                  

D. C(– 3; 6) và C(1; 2).

Hướng dẫn giải

Đáp án: B

Giải thích:

Ta có: AB→ = (2; 2) = 2(1; 1).

Phương trình đường thẳng BC đi qua điểm B(1; 2) nhận vectơ u→=1;1 làm vectơ pháp tuyến (vì AB ⊥ BC) là: x – 1 + y – 2 = 0 ⇔ x + y – 3 = 0.

Vì C thuộc đường thẳng BC nên C(t ; 3 – t) (t > 0).

Khi đó = (t – 1; 1 – t) ⇒ BC = t−12+1−t2 = 2t−1

AB→ = (2; 2) ⇒ AB = 22+22=22

Ta lại có AB = BC ⇔ 2t−1=22

⇔ |t – 1| = 2

⇔ t – 1 = 2 hoặc t – 1 = – 2

⇔ t = 3 (thỏa mãn) hoặc t = – 1 (loại)

Vậy tọa độ điểm C là (3; 0).

Xem thêm các bài trắc nghiệm Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Trắc nghiệm Toán 10 Chương 6: Hàm số, đồ thị và ứng dụng

Trắc nghiệm Bài 19: Phương trình đường thẳng

Trắc nghiệm Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách

Trắc nghiệm Bài 21: Đường tròn trong mặt phẳng toạ độ

Trắc nghiệm Bài 22: Ba đường conic

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Sách bài tập Toán 6 Bài 35 (Kết nối tri thức): Trung điểm của đoạn thẳng

Next post

Lý thuyết Trung điểm của đoạn thẳng (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 6

Bài liên quan:

20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10

Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10

Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới

Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10

Trắc nghiệm Toán 10 Kết nối tri thức có đáp án

Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)

Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10

Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  2. Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  3. Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới
  4. Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10
  5. Trắc nghiệm Toán 10 Kết nối tri thức có đáp án
  6. Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)
  7. Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10
  8. Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề
  9. Giáo án Toán 10 Kết nối tri thức (cả năm) mới nhất 2023
  10. Chuyên đề Toán 10 Kết nối tri thức | Giải bài tập Chuyên đề học tập Toán 10 hay, chi tiết
  11. Sách bài tập Toán 10 Kết nối tri thức | Giải SBT Toán 10 | Giải sách bài tập Toán 10 Tập 1, Tập 2 hay nhất | SBT Toán 10 Kết nối tri thức | SBT Toán 10 KNTT
  12. Tổng hợp Lý thuyết Toán lớp 10 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 10 | Tổng hợp kiến thức Toán 10 chương trình mới
  13. Giải sgk Toán 10 Kết nối tri thức | Giải Toán 10 | Giải Toán lớp 10 | Giải bài tập Toán 10 hay nhất | Giải Toán 10 Tập 1, Tập 2 Kết nối tri thức
  14. Sách bài tập Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  15. Giải SGK Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  16. 20 câu Trắc nghiệm Tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  17. Lý thuyết Tập hợp và các phép toán trên tập hợp (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  18. Bài giảng điện tử Tập hợp và các phép toán trên tập hợp | Kết nối tri thức Giáo án PPT Toán 10
  19. Giáo án Toán 10 Bài 2 (Kết nối tri thức 2023): Tập hợp và các phép toán trên tập hợp
  20. Sách bài tập Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  21. Giải SGK Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  22. 30 câu Trắc nghiệm Chương 1: Mệnh đề và tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  23. Lý thuyết Toán 10 Chương 1 (Kết nối tri thức 2023): Mệnh đề và Tập hợp hay, chi tiết
  24. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 1
  25. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  26. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  27. 20 câu Trắc nghiệm Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  28. Lý thuyết Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  29. Bài giảng điện tử Bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  30. Giáo án Toán 10 Bài 3 (Kết nối tri thức 2023): Bất phương trình bậc nhất hai ẩn
  31. Sách bài tập Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  32. Giải SGK Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  33. Lý thuyết Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  34. Bài giảng điện tử Hệ bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  35. Giáo án Toán 10 Bài 4 (Kết nối tri thức 2023): Hệ bất phương trình bậc nhất hai ẩn
  36. 20 câu Trắc nghiệm Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  37. Sách bài tập Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  38. Giải SGK Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  39. Lý thuyết Toán 10 Chương 2 (Kết nối tri thức 2023): Bất phương trình và hệ phương trình bậc nhất hai ẩn hay, chi tiết
  40. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 2
  41. 30 câu Trắc nghiệm Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  42. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  43. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  44. Lý thuyết Giá trị lượng giác của một góc từ 0 đến 180 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  45. Bài giảng điện tử Giá trị lượng giác của một góc từ 0 độ đến 180 độ | Kết nối tri thức Giáo án PPT Toán 10
  46. Giáo án Toán 10 Bài 5 (Kết nối tri thức 2023): Giá trị lượng giác của một góc từ 0 độ đến 180 độ
  47. 20 câu Trắc nghiệm Giá trị lượng giác của 1 góc từ 0° đến 180° (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  48. Sách bài tập Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0° đến 180°
  49. Giải SGK Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0 đến 180
  50. Lý thuyết Hệ thức lượng trong tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  51. Bài giảng điện tử Hệ thức lượng trong tam giác | Kết nối tri thức Giáo án PPT Toán 10
  52. Giáo án Toán 10 Bài 6 (Kết nối tri thức 2023): Hệ thức lượng trong tam giác

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán