Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 10

Lý thuyết Tập hợp (Chân trời sáng tạo 2023) hay, chi tiết | Toán lớp 10

By admin 14/10/2023 0

Lý thuyết Toán lớp 10 Bài 2: Tập hợp

A. Lý thuyết Tập hợp

1. Nhắc lại về tập hợp

– Trong toán học, người ta dùng từ tập hợp để chỉ một nhóm đối tượng nào đó hoàn toàn xác định. Mỗi đối tượng trong nhóm gọi là một phần tử của tập hợp đó.

– Người ta thường kí hiệu tập hợp bằng các chữ cái in hoa A, B, C, … và kí hiệu phần tử của tập hợp bằng các chữ cái in thường a, b, c, ….

Chú ý: Đôi khi, để ngắn gọn, người ta dùng từ “tập” thay cho “tập hợp”.

– Để chỉ a là một phần tử của tập hợp A, ta viết a ∈ A (đọc là “a thuộc A”). Để chỉ a không là phần tử của tập hợp A, ta viết a ∉ A (đọc là “a không thuộc A”).

Ví dụ 1.

+ Để chỉ 5 là phần tử của tập số tự nhiên ℕ, ta viết 5 ∈ ℕ.

+ Để chỉ – 1 không là phần tử của tập số tự nhiên ℕ, ta viết -1 ∉ ℕ.

– Một tập hợp có thể không chứa phần tử nào. Tập hợp như vậy gọi là tập rỗng, kí hiệu ∅.

– Người ta thường kí hiệu các tập hợp số như sau: ℕ là tập hợp các số tự nhiên, ℤ là tập hợp các số nguyên, ℚ là tập hợp các số hữu tỉ, ℝ là tập hợp các số thực.

Ví dụ 2. Muốn kí hiệu phần tử 5 thuộc tập số tự nhiên, ta kí hiệu: 5 ∈ ℕ.

*Cách xác định tập hợp

Cách 1. Liệt kê các phần tử của tập hợp;

Cách 2. Chỉ ra tính chất đặc trưng cho các phần tử của tập hợp.

Chú ý: Khi liệt kê các phần tử của tập hợp, ta có một số chú ý sau đây:

+ Các phần tử có thể được viết theo thứ tự tùy ý.

+ Mỗi phần tử chỉ được liệt kê một lần.

+ Nếu quy tắc xác định các phần tử đủ rõ thì người ta dùng “…” mà không nhất thiết viết ra tất cả các phần tử của tập hợp.

– Có những tập hợp ta có thể đếm hết các phần tử của chúng. Những tập hợp như vậy được gọi là tập hợp hữu hạn.

Ví dụ 3. Cho tập hợp D các số tự nhiên chia hết cho 3 và lớn hơn 3 nhưng nhỏ hơn 10. Mô tả tập hợp D theo hai cách:

Cách 1: Liệt kê phẩn tử tập hợp: D = {6; 9}.

Cách 2: Chỉ ra tính chất đặc trưng của các phẩn tử: D = {n ∈ ℕ | n ⋮ 3, 3 < n < 10}.

2. Tập con và hai tập hợp bằng nhau

– Cho hai tập hợp A và B. Nếu mọi phần tử của A đều là phần tử của B thì ta nói tập hợp A là tập con của tập hợp B và kí hiệu A ⊂ B (đọc là A chứa trong B), hoặc B ⊃ A (đọc là B chứa A).

Nhận xét:

+ A ⊂ A và ∅ ⊂ A với mọi tập hợp A.

+ Nếu A không phải là tập con của B thì ta kí hiệu A ⊄ B (đọc là A không chứa trong B hoặc B không chứa A).

+ Nếu A ⊂ B hoặc B ⊂ A thì ta nói A và B có quan hệ bao hàm.

– Trong toán học, người ta thường minh họa một tập hợp bằng một hình phẳng được bao quanh bởi một đường cong kín, gọi là biểu đồ Ven.

Chú ý: Giữa các tập hợp số quen thuộc (tập số tự nhiên, tập số nguyên, tập số hữu tỉ, tập số thực), ta có quan hệ bao hàm:  ℕ ⊂ ℤ ⊂ ℚ ⊂ ℝ.

Ví dụ 4. Cho tập hợp T = {2; 3; 5}; S = {2; 3; 5; 7; 9}; M = {2; 3; 4; 5}.

+ Tập hợp T là tập con của tập hợp S vì tất cả phần tử của T đều có trong phần tử của S.

+ Tập hợp M không là tập hợp con của tập hợp S vì tập M có phần tử 4 không thuộc S.

– Hai tập hợp A và B được gọi là bằng nhau, kí hiệu A = B, nếu A ⊂ B và B ⊂ A.

Ví dụ 5. Cho 2 tập hợp: T = {n ∈ ℕ | n ⋮ 9, 7 < n < 14} và S = {n ∈ ℕ | n ⋮ 3, 8 < n < 10}.

Tìm các phần tử của T và S ta có T = {9} và S = {9} nên T = S.

3. Một số tập con của tập hợp số thực

– Ta thường sử dụng các tập con của tập số thực sau đây (a và b là các số thực, a < b):

Tên gọi và kí hiệu

Tập hợp

Biểu diễn trên trục số

Tập số thực (-∞; +∞)

ℝ

Đoạn [a; b]

{x ∈ ℝ | a ≤  x ≤ b}

Khoảng (a; b)

{x ∈ ℝ | a < x < b}

Nửa khoảng [a; b)

{x ∈ ℝ | a ≤  x < b}

Nửa khoảng (a; b]

{x ∈ ℝ | a < x ≤ b}

Nửa khoảng (-∞; a]

{x ∈ ℝ |  x ≤ a}

Nửa khoảng [a; +∞)

{x ∈ ℝ | x ≥ a}

Khoảng (-∞; a)

{x ∈ ℝ | x < a}

Khoảng (a; +∞)

{x ∈ ℝ | x > a}

– Trong các kí hiệu trên, kí hiệu – ∞ đọc là âm vô cực (âm vô cùng), kí hiệu + ∞ đọc là dương vô cực (dương vô cùng).

Ví dụ 6.

Cho x thỏa mãn 2 < x ≤ 6 thì ta kí hiệu x ∈ (2; 6].

Cho x thỏa mãn x ≥ 7 thì ta kí hiệu x ∈ [7; +∞).

B. Bài tập tự luyện

Bài 1. Hãy viết tập hợp sau bằng cách nêu tính chất đặc trưng cho các phần tử của tập hợp:

a) A = {0; 4; 8; 12}.

b) B = {15; 24; 35; 48}.

Hướng dẫn giải

a) A = {x ∈ ℕ | x ⋮ 4, x < 13}.

b) B = {n ∈ ℕ | n2 – 1, 3 < n < 8}.

Bài 2. Hãy viết tập hợp sau bằng cách liệt kê các phần tử:

a) A = {x2 – 1 | x ∈ ℤ, ‒1 < x < 2};

b) B = {x ∈ ℕ | x ⋮ 5, x < 50}.

Hướng dẫn giải

a) A = {1; 0}.

b) B = {0; 5; 10; 15; 20; 25; 30; 35; 40; 45}.

Bài 3. Cho A = {2; 6; 4; 5}, B = {2; x}, C = {6; y}, D = {m, n}. Tìm x, y, m, n (nếu có) để:

a) B = C = D.

b) C = D ⊂ A và y > 3.

c) B = D ⊄ A và 1 < x < 7.

Hướng dẫn giải

a) Để B = C thì tập B phải có phần tử 6 và tập C phải có phần tử 2.

Do đó x = 6 và y = 2. Khi đó B = C = {2; 6}.

Để D = B = C thì D = {2; 6}. Vậy m = 6, n = 2 hoặc m = 2, n = 6.

b) Để C ⊂ A thì tập C có các phần tử giống phần tử nằm trong tập A.

Suy ra y có thể bằng 2; 4; 5. Mà y > 3 nên y chỉ có thể bằng 4 hoặc 5.

+ Nếu y = 4 thì để D = C thì C = D = {4; 6}. Vậy m = 4, n = 6 hoặc m = 6, n = 4.

+ Nếu y = 5 thì để D = C thì C = D = {5; 6}. Vậy m = 5, n = 6 hoặc m = 6, n = 5.

c) Để B ⊄ A thì x phải khác các phần tử 2; 6; 5; 4. Mà 1 < x < 7.

Suy ra x = 3. Khi đó B = {2; 3}.

Ta có D = B = {2; 3}. Vậy m = 2, n = 3 hoặc m = 3, n = 2.

Bài 4. Dùng kí hiệu đoạn, khoảng, nửa khoảng viết tập hợp sau và vẽ chúng trên trục số:

a) {x ∈ ℝ | 7 < x ≤ 12}.

b) {x ∈ ℝ | x ≤ ‒ 5}.

Hướng dẫn giải

a) Kí hiệu: (7; 12]. Biểu diễn trên trục số:

b) Kí hiệu: (‒∞; ‒5]. Biểu diễn trên trục số:

Xem thêm các bài tóm tắt lý thuyết Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Lý thuyết Bài 1: Mệnh đề

Lý thuyết Bài 2: Tập hợp

Lý thuyết Bài 3: Các phép toán trên tập hợp

Lý thuyết Bài 1: Bất phương trình bậc nhất hai ẩn

Lý thuyết Bài 2: Hệ bất phương trình bậc nhất hai ẩn

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Lý thuyết Thứ tự trong tập hợp số nguyên (Chân trời sáng tạo 2023) hay, chi tiết | Toán lớp 6

Next post

88 câu Trắc nghiệm Phép cộng và phép trừ hai số nguyên (Chân trời sáng tạo) có đáp án 2023 – Toán 6

Bài liên quan:

20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10

Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10

Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới

Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10

Trắc nghiệm Toán 10 Kết nối tri thức có đáp án

Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)

Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10

Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  2. Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  3. Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới
  4. Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10
  5. Trắc nghiệm Toán 10 Kết nối tri thức có đáp án
  6. Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)
  7. Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10
  8. Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề
  9. Giáo án Toán 10 Kết nối tri thức (cả năm) mới nhất 2023
  10. Chuyên đề Toán 10 Kết nối tri thức | Giải bài tập Chuyên đề học tập Toán 10 hay, chi tiết
  11. Sách bài tập Toán 10 Kết nối tri thức | Giải SBT Toán 10 | Giải sách bài tập Toán 10 Tập 1, Tập 2 hay nhất | SBT Toán 10 Kết nối tri thức | SBT Toán 10 KNTT
  12. Tổng hợp Lý thuyết Toán lớp 10 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 10 | Tổng hợp kiến thức Toán 10 chương trình mới
  13. Giải sgk Toán 10 Kết nối tri thức | Giải Toán 10 | Giải Toán lớp 10 | Giải bài tập Toán 10 hay nhất | Giải Toán 10 Tập 1, Tập 2 Kết nối tri thức
  14. Sách bài tập Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  15. Giải SGK Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  16. 20 câu Trắc nghiệm Tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  17. Lý thuyết Tập hợp và các phép toán trên tập hợp (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  18. Bài giảng điện tử Tập hợp và các phép toán trên tập hợp | Kết nối tri thức Giáo án PPT Toán 10
  19. Giáo án Toán 10 Bài 2 (Kết nối tri thức 2023): Tập hợp và các phép toán trên tập hợp
  20. Sách bài tập Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  21. Giải SGK Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  22. 30 câu Trắc nghiệm Chương 1: Mệnh đề và tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  23. Lý thuyết Toán 10 Chương 1 (Kết nối tri thức 2023): Mệnh đề và Tập hợp hay, chi tiết
  24. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 1
  25. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  26. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  27. 20 câu Trắc nghiệm Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  28. Lý thuyết Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  29. Bài giảng điện tử Bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  30. Giáo án Toán 10 Bài 3 (Kết nối tri thức 2023): Bất phương trình bậc nhất hai ẩn
  31. Sách bài tập Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  32. Giải SGK Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  33. Lý thuyết Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  34. Bài giảng điện tử Hệ bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  35. Giáo án Toán 10 Bài 4 (Kết nối tri thức 2023): Hệ bất phương trình bậc nhất hai ẩn
  36. 20 câu Trắc nghiệm Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  37. Sách bài tập Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  38. Giải SGK Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  39. Lý thuyết Toán 10 Chương 2 (Kết nối tri thức 2023): Bất phương trình và hệ phương trình bậc nhất hai ẩn hay, chi tiết
  40. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 2
  41. 30 câu Trắc nghiệm Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  42. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  43. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  44. Lý thuyết Giá trị lượng giác của một góc từ 0 đến 180 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  45. Bài giảng điện tử Giá trị lượng giác của một góc từ 0 độ đến 180 độ | Kết nối tri thức Giáo án PPT Toán 10
  46. Giáo án Toán 10 Bài 5 (Kết nối tri thức 2023): Giá trị lượng giác của một góc từ 0 độ đến 180 độ
  47. 20 câu Trắc nghiệm Giá trị lượng giác của 1 góc từ 0° đến 180° (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  48. Sách bài tập Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0° đến 180°
  49. Giải SGK Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0 đến 180
  50. Lý thuyết Hệ thức lượng trong tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  51. Bài giảng điện tử Hệ thức lượng trong tam giác | Kết nối tri thức Giáo án PPT Toán 10
  52. Giáo án Toán 10 Bài 6 (Kết nối tri thức 2023): Hệ thức lượng trong tam giác

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán