Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 10

Sách bài tập Toán 10 Bài 3 (Chân trời sáng tạo): Các phép toán trên tập hợp

By admin 14/10/2023 0

Giải SBT Toán lớp 10 Bài 3: Các phép toán trên tập hợp

Giải SBT Toán 10 trang 16 Tập 1

Bài 1 trang 16 SBT Toán 10 Tập 1: Xác định A ∩ B, A ∪ B, A \ B, B \ A trong các trường hợp sau:

a) A = {a; b; c; d}, B = {a; c; e};

b) A = {x | x2 – 5x – 6 = 0}, B = {x | x2 = 1};

c) A = {x ∈ ℕ | x là số lẻ, x < 8}, B = {x ∈ ℕ | x là các ước của 12}.

Lời giải:

a) Ta có: A ∩ B = {x | x ∈ A và x ∈ B}

Các phần tử vừa thuộc A vừa thuộc B là: a; c.

Do đó A ∩ B = {a; c}.

Ta có: A ∪ B = {x | x ∈ A hoặc x ∈ B}

Các phần tử thuộc A hoặc thuộc B là: a; b; c; d; e.

Do đó A ∪ B = {a; b; c; d; e},

Ta có: A \ B = {x | x ∈ A và x ∉ B}

Các phần tử thuộc A nhưng không thuộc B là: b; d.

Do đó A \ B = {b; d}.

Ta có: B \ A = {x | x ∈ B và x ∉ A}

Phần tử thuộc B nhưng không thuộc A là: e.

Do đó, B \ A = {e}.

b) Giải phương trình x2 – 5x – 6 = 0.

Ta có: x2 – 5x – 6 = 0

⇔ x2 + x – 6x – 6 = 0 

⇔ x(x + 1) – 6(x + 1) = 0

⇔ (x – 6)(x + 1) = 0

⇔ x = 6 hoặc x = – 1.

Do đó, A = {– 1; 6}.

Ta có: x2 = 1 ⇔ x = 1 hoặc x = – 1.

Do đó, B = {– 1; 1}.

Vậy A ∩ B = {x | x ∈ A và x ∈ B} = {– 1};

A ∪ B = {x | x ∈ A hoặc x ∈ B} = {– 1; 1; 6};

A \ B = {x | x ∈ A và x ∉ B} = {6};

B \ A = {x | x ∈ B và x ∉ A} = {1}.

c) Các số tự nhiên lẻ nhỏ hơn 8 là: 1; 3; 5; 7. Do đó, A = {1; 3; 5; 7}.

Các số tự nhiên là ước của 12 là: 1; 2; 3; 4; 6; 12. Do đó, B = {1; 2; 3; 4; 6; 12}.

Vậy A ∩ B = {x | x ∈ A và x ∈ B} = {1; 3};

A ∪ B = {x | x ∈ A hoặc x ∈ B} = {1; 2; 3; 4; 5; 6; 7; 12};

A \ B = {x | x ∈ A và x ∉ B} = {5; 7};

B \ A = {x | x ∈ B và x ∉ A} = {2; 4; 6; 12}.

Bài 2 trang 16 SBT Toán 10 Tập 1: Cho hai tập hợp A = {(x; y) | 3x – 2y = 11}, B = {(x ; y) | 2x + 3y = 3}. Hãy xác định tập hợp A ∩ B. 

Lời giải:

Ta thấy (x; y) ∈ A ∩ B khi (x; y) là nghiệm của hệ phương trình:I3x−2y=11   12x+3y=3     2.

Nhân hai vế của (1) với 3, nhân hai vế của (2) với 2, ta được hệ phương trình 9x−6y=334x+6y=6

Cộng vế với vế hai phương trình của hệ này, ta được 13x = 39 hay x = 3.

Thay x = 3 vào (1) ta được 3 . 3 – 2y = 11, suy ra y = – 1.

Do đó, hệ phương trình (I) có một nghiệm là (3; – 1).

Vậy A ∩ B = {(3; – 1)}.

Bài 3 trang 16 SBT Toán 10 Tập 1: Cho các tập hợp A = {1; 3; 5; 7; 9}, B = {1; 2; 3; 4}, C = {3; 4; 5; 6}. Hãy xác định các tập hợp:

a) (A ∪ B) ∩ C;

b) A ∩ (B ∩ C);

c) A \ (B ∩ C);

d) (A \ B) ∪ (A \ C).

Lời giải:

a) Ta có: A ∪ B = {x | x ∈ A hoặc x ∈ B} = {1; 2; 3; 4; 5; 7; 9}.

Do đó, (A ∪ B) ∩ C = {x | x ∈ (A ∪ B) và x ∈ C} = {3; 4; 5}.

b) Ta có: B ∩ C = {x | x ∈ B và x ∈ C} = {3; 4}.

Do đó, A ∩ (B ∩ C) = {x | x ∈ A và x ∈ (B ∩ C)} = {3}.

c) Ta có: A \ (B ∩ C) = {x | x ∈ A và x ∉ (B ∩ C)} = {1; 5; 7; 9}.

d) Ta có: A \ B = {x | x ∈ A và x ∉ B} = {5; 7; 9}.

A \ C = {x | x ∈ A và x ∉ C} = {1; 7; 9}.

Do đó, (A \ B) ∪ (A \ C) = {x | x ∈ (A \ B) hoặc x ∈ (A \ C)} = {1; 5; 7; 9}.

Giải SBT Toán 10 trang 17 Tập 1

Bài 4 trang 17 SBT Toán 10 Tập 1: Kí hiệu A là tập hợp các học sinh nữ của trường, B là tập hợp các học sinh khối 10 của trường; C, D lần lượt là tập hợp các học sinh nữ, các học sinh nam khối 10 của trường (Hình 7). Hãy điền kí hiệu tập hợp thích hợp vào chỗ chấm.

Sách bài tập Toán 10 Bài 3: Các phép toán trên tập hợp - Chân trời sáng tạo (ảnh 1)

a) A ∩ B = …;

b) C ∪ D = …;

c) B \ A = …;

d) B ∩ C = …;

e) C \ A = …;

g) D \ A = …; 

Lời giải:

a) Do A là tập hợp các học sinh nữ của trường và B là tập hợp các học sinh khối 10 của trường nên A ∩ B là tập hợp các học sinh nữ khối 10 của trường và chính là tập C.

Sách bài tập Toán 10 Bài 3: Các phép toán trên tập hợp - Chân trời sáng tạo (ảnh 1)

Do đó, A ∩ B = C.

b) Do C, D lần lượt là tập hợp các học sinh nữ, các học sinh nam khối 10 của trường nên C ∪ D là tập hợp các học sinh khối 10 của trường và chính là tập hợp B.

Sách bài tập Toán 10 Bài 3: Các phép toán trên tập hợp - Chân trời sáng tạo (ảnh 1)

Do đó, C ∪ D = B.

c) B \ A là tập hợp các phần tử thuộc B nhưng không thuộc A, mà B là tập hợp các học sinh khối 10 của trường và A là tập hợp các học sinh nữ của trường, do đó B \ A là tập hợp các học sinh nam khối 10 của trường và chính là tập hợp D.

Sách bài tập Toán 10 Bài 3: Các phép toán trên tập hợp - Chân trời sáng tạo (ảnh 1)

Vậy B \ A = D.

d) B ∩ C là tập hợp các phần tử vừa thuộc B vừa thuộc C, mà B là tập hợp các học sinh khối 10 của trường và C là tập hợp các học sinh nữ khối 10 của trường nên B ∩ C = C.

Sách bài tập Toán 10 Bài 3: Các phép toán trên tập hợp - Chân trời sáng tạo (ảnh 1)

e) C \ A là tập hợp các phần tử thuộc C nhưng không thuộc A, theo sơ đồ Ven, ta thấy C ⊂ A. Do đó, C \ A = ∅.

g) D \ A là tập hợp các phần tử thuộc D nhưng không thuộc A, mà D là tập hợp các học sinh nam khối 10 của trường và A là tập hợp các học sinh nữ của trường, do đó D \ A là tập hợp các học sinh nam khối 10 của trường và chính là tập D.

Sách bài tập Toán 10 Bài 3: Các phép toán trên tập hợp - Chân trời sáng tạo (ảnh 1)

Vậy D \ A = D.

Bài 5 trang 17 SBT Toán 10 Tập 1: Cho A là tập hợp tùy ý. Hãy điền kí hiệu tập hợp thích hợp vào chỗ chấm.

a) A ∩ A = …;

b) A ∪ A = …;

c) A ∩ ∅ = …;

d) A ∪ ∅ = …;

e) A \ A = …;

g) A \ ∅ = …;

h) ∅ \ A = ….

Lời giải:

a) A ∩ A = {x | x ∈ A và x ∈ A} = {x | x ∈ A} = A.

b) A ∪ A = {x | x ∈ A hoặc x ∈ A} = {x | x ∈ A} = A.

c) Do ∅ ⊂ A nên A ∩ ∅ = ∅.

d) Do ∅ ⊂ A nên A ∪ ∅ = A.

e) A \ A = {x | x ∈ A và x ∉ A} = ∅.

g) A \ ∅ = A.  (Do tập ∅ không có chứa phần tử nào).

h) ∅ \ A = ∅.

Bài 6 trang 17 SBT Toán 10 Tập 1: Cho A, B là hai tập hợp tùy ý. Hãy điền kí hiệu tập hợp thích hợp vào chỗ chấm.

a) Nếu B ⊂ A thì A ∩ B = …, A ∪ B = … và B \ A = …;  

b) Nếu A ∩ B = ∅ thì A \ B = … và B \ A = ….

Lời giải:

a) Ta có B ⊂ A, ta biểu diễn sơ đồ Ven như sau:

Sách bài tập Toán 10 Bài 3: Các phép toán trên tập hợp - Chân trời sáng tạo (ảnh 1)

Khi đó, mọi phần tử của B đều là phần tử của A.

Vậy A ∩ B = B, A ∪ B = A và B \ A = ∅.

b) Ta có A ∩ B = ∅ nên A và B là hai tập hợp rời nhau:

Sách bài tập Toán 10 Bài 3: Các phép toán trên tập hợp - Chân trời sáng tạo (ảnh 1)

Khi đó mọi phần tử của A và B đều khác nhau.

Vậy A \ B = A và B \ A = B.

Bài 7 trang 17 SBT Toán 10 Tập 1: Cho các tập con A = [– 1; 3] và B = [0; 5) của tập số thực ℝ. Hãy xác định A ∩ B, A ∪ B, A \ B, B \ A.

Lời giải:

+ Để xác định A ∩ B ta vẽ sơ đồ sau:

Sách bài tập Toán 10 Bài 3: Các phép toán trên tập hợp - Chân trời sáng tạo (ảnh 1)

Từ sơ đồ, ta suy ra A ∩ B = [– 1; 3] ∩ [0; 5) = [0; 3].

+ Để xác định A ∪ B ta vẽ sơ đồ sau:

Sách bài tập Toán 10 Bài 3: Các phép toán trên tập hợp - Chân trời sáng tạo (ảnh 1)

Từ sơ đồ, ta suy ra A ∪ B = [– 1; 3] ∪ [0; 5) = [– 1; 5).

+ Để xác định A \ B ta vẽ sơ đồ sau:

Sách bài tập Toán 10 Bài 3: Các phép toán trên tập hợp - Chân trời sáng tạo (ảnh 1)

Từ sơ đồ, ta suy ra A \ B = [– 1; 3] \ [0; 5) = [– 1; 0).

+ Để xác định B \ A ta vẽ sơ đồ sau:

Sách bài tập Toán 10 Bài 3: Các phép toán trên tập hợp - Chân trời sáng tạo (ảnh 1)

Từ sơ đồ, ta suy ra B \ A = [0; 5) \ [– 1; 3] = (3; 5).

Bài 8 trang 17 SBT Toán 10 Tập 1: 10E có 18 bạn chơi cầu lông, 15 bạn chơi cờ vua, 10 bạn chơi cả hai môn và 12 bạn không chơi môn nào trong hai môn thể thao này.

a) 10E có bao nhiêu bạn chơi ít nhất một môn thể thao trên?

b) 10E có bao nhiêu học sinh?

Lời giải:

Kí hiệu A là tập hợp các học sinh của 10E, B = {x ∈ A | x chơi cầu lông},

C = {x ∈ A | x chơi cờ vua}, D = {x ∈ A |x không chơi cầu lông, cũng không chơi cờ vua}.

Sách bài tập Toán 10 Bài 3: Các phép toán trên tập hợp - Chân trời sáng tạo (ảnh 1)

Theo giả thiết, n(B) = 18, n(C) = 15, n(B ∩ C) = 10 và n(D) = 12.

a) Số học sinh của 10E chơi ít nhất một môn thể thao là:

n(B ∪ C) = n(B) + n(C) – n(B ∩ C) = 18 + 15 – 10 = 23 (bạn).

b) Số học sinh của 10E là:

n(A) = n(B ∪ C) + n(D) = 23 + 12 = 35 (bạn).

Bài 9 trang 17 SBT Toán 10 Tập 1: Biết rằng tập hợp M thỏa mãn M ∩ {1; 3} = {1}, M ∩ {5; 7} = {5}, M ∩ {9; 11} = {9} và M ⊂ {1; 3; 5; 7; 9; 11}. Hãy tìm M.

Lời giải:

Do M ∩ {1; 3} = {1}, suy ra 1 ∈ M và 3 ∉ M.

Do M ∩ {5; 7} = {5}, suy ra 5 ∈ M và 7 ∉ M.

Do M ∩ {9; 11} = {9}, suy ra 9 ∈ M và 11 ∉ M.

Lại có M ⊂ {1; 3; 5; 7; 9; 11}.

Do đó, các phần tử của M là 1; 5; 9.

Vậy M = {1; 5; 9}.

Bài 10 trang 17 SBT Toán 10 Tập 1: Cho tập hợp A = {1; 2; 3},

a) tìm tất cả các tập hợp B sao cho A ∪ B = A;

b) tìm tất cả các tập hợp C sao cho A ∩ C = C.

Lời giải:

a) Ta có A ∪ B = A khi và chỉ khi mọi phần tử của B đều là phần tử của A hay B phải là tập con của A.

Mà A = {1; 2; 3}, nên các tập con của A là: ∅, {1}, {2}, {3}, {1; 2}, {1; 3}, {2; 3}, {1; 2; 3}.

Vậy các tập hợp B cần tìm là: ∅, {1}, {2}, {3}, {1; 2}, {1; 3}, {2; 3}, {1; 2; 3}.

b) Ta có A ∩ C = C khi và chỉ khi mọi phần tử của C đều là phần tử của A hay C là tập con của A.

Vậy các tập hợp C cần tìm là: ∅, {1}, {2}, {3}, {1; 2}, {1; 3}, {2; 3}, {1; 2; 3}.

Bài 11 trang 17 SBT Toán 10 Tập 1: Cho U = {3; 5; a2}, A = {3; a + 4}. Tìm giá trị của a sao cho CUA = {1}.

Lời giải:

Ta có: CUA = U \ A = {x | x ∈ U và x ∉ A}.

Mà CUA = {1}, do đó, 1 ∈ U = {3; 5; a2}, suy ra a2 = 1 nên a = 1 hoặc a = – 1.

+ Với a = 1, suy ra a + 4 = 1 + 4 = 5 nên ta có U = {1; 3; 5} và A = {3; 5}.

Khi đó, CUA = U \ A = {1} (thỏa mãn).

+ Với a = – 1, suy ra a + 4 = – 1 + 4 = 3 nên ta có U = {1; 3; 5} và A = {3}.

Khi đó, CUA = U \ A = {1; 5} (không thỏa mãn).

Vậy giá trị cần tìm là a = 1.

Xem thêm các bài giải SBT Toán 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 2: Tập hợp

Bài tập cuối chương 1

Bài 1: Bất phương trình bậc nhất hai ẩn

Bài 2: Hệ bất phương trình bậc nhất hai ẩn

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải SGK Toán 6 Bài 4 (Chân trời sáng tạo): Phép nhân và phép chia hết hai số nguyên

Next post

Giải SGK Toán 10 Bài 3 (Chân trời sáng tạo): Các phép toán trên tập hợp

Bài liên quan:

20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10

Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10

Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới

Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10

Trắc nghiệm Toán 10 Kết nối tri thức có đáp án

Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)

Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10

Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  2. Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  3. Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới
  4. Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10
  5. Trắc nghiệm Toán 10 Kết nối tri thức có đáp án
  6. Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)
  7. Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10
  8. Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề
  9. Giáo án Toán 10 Kết nối tri thức (cả năm) mới nhất 2023
  10. Chuyên đề Toán 10 Kết nối tri thức | Giải bài tập Chuyên đề học tập Toán 10 hay, chi tiết
  11. Sách bài tập Toán 10 Kết nối tri thức | Giải SBT Toán 10 | Giải sách bài tập Toán 10 Tập 1, Tập 2 hay nhất | SBT Toán 10 Kết nối tri thức | SBT Toán 10 KNTT
  12. Tổng hợp Lý thuyết Toán lớp 10 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 10 | Tổng hợp kiến thức Toán 10 chương trình mới
  13. Giải sgk Toán 10 Kết nối tri thức | Giải Toán 10 | Giải Toán lớp 10 | Giải bài tập Toán 10 hay nhất | Giải Toán 10 Tập 1, Tập 2 Kết nối tri thức
  14. Sách bài tập Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  15. Giải SGK Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  16. 20 câu Trắc nghiệm Tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  17. Lý thuyết Tập hợp và các phép toán trên tập hợp (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  18. Bài giảng điện tử Tập hợp và các phép toán trên tập hợp | Kết nối tri thức Giáo án PPT Toán 10
  19. Giáo án Toán 10 Bài 2 (Kết nối tri thức 2023): Tập hợp và các phép toán trên tập hợp
  20. Sách bài tập Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  21. Giải SGK Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  22. 30 câu Trắc nghiệm Chương 1: Mệnh đề và tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  23. Lý thuyết Toán 10 Chương 1 (Kết nối tri thức 2023): Mệnh đề và Tập hợp hay, chi tiết
  24. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 1
  25. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  26. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  27. 20 câu Trắc nghiệm Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  28. Lý thuyết Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  29. Bài giảng điện tử Bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  30. Giáo án Toán 10 Bài 3 (Kết nối tri thức 2023): Bất phương trình bậc nhất hai ẩn
  31. Sách bài tập Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  32. Giải SGK Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  33. Lý thuyết Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  34. Bài giảng điện tử Hệ bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  35. Giáo án Toán 10 Bài 4 (Kết nối tri thức 2023): Hệ bất phương trình bậc nhất hai ẩn
  36. 20 câu Trắc nghiệm Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  37. Sách bài tập Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  38. Giải SGK Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  39. Lý thuyết Toán 10 Chương 2 (Kết nối tri thức 2023): Bất phương trình và hệ phương trình bậc nhất hai ẩn hay, chi tiết
  40. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 2
  41. 30 câu Trắc nghiệm Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  42. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  43. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  44. Lý thuyết Giá trị lượng giác của một góc từ 0 đến 180 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  45. Bài giảng điện tử Giá trị lượng giác của một góc từ 0 độ đến 180 độ | Kết nối tri thức Giáo án PPT Toán 10
  46. Giáo án Toán 10 Bài 5 (Kết nối tri thức 2023): Giá trị lượng giác của một góc từ 0 độ đến 180 độ
  47. 20 câu Trắc nghiệm Giá trị lượng giác của 1 góc từ 0° đến 180° (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  48. Sách bài tập Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0° đến 180°
  49. Giải SGK Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0 đến 180
  50. Lý thuyết Hệ thức lượng trong tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  51. Bài giảng điện tử Hệ thức lượng trong tam giác | Kết nối tri thức Giáo án PPT Toán 10
  52. Giáo án Toán 10 Bài 6 (Kết nối tri thức 2023): Hệ thức lượng trong tam giác

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán