Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 10

Sách bài tập Toán 10 (Chân trời sáng tạo) Bài tập cuối chương 1

By admin 14/10/2023 0

Giải SBT Toán lớp 10 Bài tập cuối chương 1

Giải SBT Toán 10 trang 18 Tập 1

A. Trắc nghiệm

Bài 1 trang 18 SBT Toán 10 Tập 1: Mệnh đề nào sau đây đúng?

A. 0 = {0};

B. 0 ∈ {0};

C. 0 ⊂ {0};

D. 0 = ∅.

Lời giải:

Đáp án đúng là: B

Ta có {0} là một tập hợp, 0 là một phần tử nên viết 0 = {0} là sai, do đó đáp án A sai.

0 là một phần tử của tập hợp {0}, do đó ta viết 0 ∈ {0} là đúng nên đáp án B đúng.

Kí hiệu ⊂ dùng để chỉ mối quan hệ giữa các tập hợp nên đáp án C sai.

∅ là một tập hợp nên đáp án D sai.

Bài 2 trang 18 SBT Toán 10 Tập 1: Biết rằng P ⇒ Q là mệnh đề đúng. Mệnh đề nào sau đây đúng?

A. P là điều kiện cần để có Q;

B. P là điều kiện đủ để có Q;

C. Q là điều kiện cần và đủ để có P;

D. Q là điều kiện đủ để có P.

Lời giải:

Đáp án đúng là: B

Ta có P ⇒ Q là mệnh đề đúng, khi đó, ta có thể nói bằng một trong các cách sau:

+ P suy ra Q;

+ P kéo theo Q;

+ P là điều kiện đủ để có Q;

+ Q là điều kiện cần để có P.

Vậy trong các đáp án đã cho, đáp án B là đáp án đúng.

Bài 3 trang 18 SBT Toán 10 Tập 1: Cho số thực x. Mệnh đề nào sau đây là điều kiện đủ của “x > 1”?

A. x > 0;

B. x ≥ 1;

C. x < 1;

D. x ≥ 2.

Lời giải:

Đáp án đúng là: D

Ta có P ⇒ Q là mệnh đề đúng thì P là điều kiện đủ để có Q.

Xét các mệnh đề:

+ “Nếu x > 0 thì x > 1”, đây là mệnh đề sai, chẳng hạn ta có thể lấy x = 1, có 1 > 0 đúng nhưng 1 > 1 sai.

+ “Nếu x ≥ 1 thì x > 1”, đây là mệnh đề sai, chẳng hạn ta có thể lấy x = 1, có 1 ≥ 1 đúng nhưng 1 > 1 sai.

+ “Nếu x < 1 thì x > 1”, đây là mệnh đề sai.

+ “Nếu x ≥ 2 thì x > 1”, đây là mệnh đề đúng do 2 > 1.

Vậy mệnh đề “x ≥ 2” là điều kiện đủ của “x > 1”.

Bài 4 trang 18 SBT Toán 10 Tập 1: Mệnh đề nào sau đây sai?

(1) ∅ ∈ {0};

(2) {1} ⊂ {0; 1; 2};

(3) {0} = ∅;

(4) {0} ⊂ {x | x2 = x}.

A. (1) và (3);

B. (1) và (4);

C. (2) và (4);

D. (2) và (3).

Lời giải:

Đáp án đúng là: A

Ta có: ∅ và {0} đều là các tập hợp, mà kí hiệu ∈ dùng để chỉ mối quan hệ giữa phần tử và tập hợp nên mệnh đề (1) sai.

Tập hợp {1} gồm một phần tử là 1, phần tử này thuộc tập {0; 1; 2} nên {1} ⊂ {0; 1; 2}, do đó mệnh đề (2) đúng.

Tập ∅ không chứa phần tử nào, tập {0} chứa một phần tử 0, nên hai tập này không thể bằng nhau, do đó mệnh đề (3) sai.

Ta có: x2 = x ⇔ x = 0 hoặc x = 1, do đó {x | x2 = x} = {0; 1}.

Có {0} ⊂ {0; 1}, từ đó suy ra {0} ⊂ {x | x2 = x} nên mệnh đề (4) đúng.

Vậy trong các mệnh đề đã cho, mệnh đề (1) và (3) là mệnh đề sai.

Bài 5 trang 18 SBT Toán 10 Tập 1: Cho tập hợp M = {x ∈ ℕ | x = 5 – m, m ∈ ℕ}. Số phần tử của tập hợp M bằng:

A. 4;

B. 5;

C. 6;

D. 10.

Lời giải:

Đáp án đúng là: C

Do m và x là các số tự nhiên, nên ta lần lượt thay các giá trị của m bởi 0, 1, 2,… để tìm x thỏa mãn.

Ta có:

Với m = 0 thì x = 5 – 0 = 5 ∈ ℕ;

Với m = 1 thì x = 5 – 1 = 4 ∈ ℕ;

Với m = 2 thì x = 5 – 2 = 3 ∈ ℕ;

Với m = 3 thì x = 5 – 3 = 2 ∈ ℕ;

Với m = 4 thì x = 5 – 4 = 1 ∈ ℕ;

Với m = 5 thì x = 5 – 5 = 0 ∈ ℕ;

Với m = 6 thì x = 5 – 6 = – 1 ∉ ℕ, không thỏa mãn, ta dừng lại.

Vậy các giá trị x thỏa mãn là 0, 1, 2, 3, 4, 5.

Do đó, M = {0; 1; 2; 3; 4; 5} nên tập hợp M có 6 phần tử.

Bài 6 trang 18 SBT Toán 10 Tập 1: Tập hợp {y ∈ ℕ | y = 5 – x2, x ∈ ℕ} có bao nhiêu tập hợp con?

A. 3;

B. 4;

C. 8;

D. 16.

Lời giải:

Đáp án đúng là: C

Do y và x là các số tự nhiên, nên ta lần lượt thay các giá trị của x bởi 0, 1, 2,… để tìm y thỏa mãn. 

Ta có:

Với x = 0 thì y = 5 – 02 = 5 ∈ ℕ;

Với x = 1 thì y = 5 – 12 = 4 ∈ ℕ;

Với x = 2 thì y = 5 – 22 = 1 ∈ ℕ;

Với x = 3 thì y = 5 – 32 = – 4 ∉ ℕ, không thỏa mãn, ta dừng lại.

Vậy các giá trị y thỏa mãn là 1, 4, 5.

Do đó, {y ∈ ℕ | y = 5 – x2, x ∈ ℕ} = {1; 4; 5}.

Các tập con của tập hợp {1; 4; 5} là ∅, {1}, {4}, {5}, {1; 4}, {1; 5}, {4; 5}, {1; 4; 5}.

Vậy có 8 tập con thỏa mãn.

Ngoài ra, ta có thể tính số tập con của một tập gồm k phần tử bằng cách tính 2k.

Tập {1; 4; 5} có 3 phần tử nên có 23 = 8 tập con.

Bài 7 trang 18 SBT Toán 10 Tập 1: Cho A = {– 2; – 1; 0; 1; 2}, B = {x | x + 1 ≤ 0}. Tập hợp A \ B bằng

A. {0; 1; 2};

B. {– 1};

C. {– 2; – 1};

D. {– 2}.

Lời giải:

Đáp án đúng là: A

Ta có: x + 1 ≤ 0 ⇔ x ≤ 0 – 1 ⇔ x ≤ – 1.

Do đó, B = {x | x + 1 ≤ 0} = {x | x ≤ – 1} = (– ∞; – 1].

Vậy A \ B = {– 2; – 1; 0; 1; 2} \ (– ∞; – 1] = {0; 1; 2}.

Bài 8 trang 18 SBT Toán 10 Tập 1: Cho các tập hợp A = {– 1; 0; 1; 2}, B = {x | x – 1 ≥ 0}. Tập hợp A \ B bằng

A. {2};

B. {– 1; 0; 1};

C. {1; 2};

D. {– 1; 0}.

Lời giải:

Đáp án đúng là: D

Ta có: x – 1 ≥ 0 ⇔ x ≥ 1.

Do đó, B = {x | x – 1 ≥ 0} = {x | x ≥ 1} = [1; + ∞).

Vậy A \ B = {– 1; 0; 1; 2} \ [1; + ∞) = {– 1; 0}.

Bài 9 trang 18 SBT Toán 10 Tập 1: Cho A = {x | x là hình bình hành}, B = {x | x là hình chữ nhật}, C = {x | x là hình thoi}, D = {x | x là hình vuông}. Mệnh đề nào sau đây sai?

A. B ∩ C = D;

B. C ∩ D = D;

C. B ∪ C = D;

D. B ∩ D = D.

Lời giải:

Đáp án đúng là: C

Lấy phần tử a tùy ý thuộc D, khi đó a là một hình vuông, mà hình vuông có 4 góc bằng nhau và bằng 90° nên nó cũng là hình chữ nhật, do đó a thuộc B.

Vậy D ⊂ B nên B ∩ D = D, đáp án D đúng.

Tương tự hình vuông thì có 4 cạnh bằng nhau nên nó cũng là một hình thoi, do đó a thuộc C. Vậy D ⊂ C nên C ∩ D = D, đáp án B đúng.

Hình thoi có 4 cạnh bằng nhau, hình chữ nhật có 4 góc bằng nhau và bằng 90°, do đó một hình vừa là hình chữ nhật vừa là hình thoi thì nó sẽ là hình vuông nên B ∩ C = D, đáp án A đúng.

Đáp án C sai do nếu ta có B ∪ C = D, x ∈ B ∪ C thì x ∈ D. Có x ∈ B ∪ C thì x là hình chữ nhật hoặc hình thoi, mà hình chữ nhật hoặc hình thoi thì chưa chắc đã là hình vuông nên vô lí.

Bài 10 trang 18 SBT Toán 10 Tập 1: Cho tập hợp A = {x | x > a}, B = {x | 1 < x < 2}. Để A ∪ (CℝB) = ℝ, điều kiện cần và đủ là

A. a ≤ 1;

B. a < 1;

C. a ≥ 2;

D. a > 2

Lời giải:

Đáp án đúng là: B

Ta có: A = {x | x > a} = (a; + ∞).

B = {x | 1 < x < 2} = (1; 2).

Lại có CℝB = ℝ \ B = (– ∞; 1] ∪ [2; + ∞). 

Để A ∪ (CℝB) = ℝ thì (a; + ∞) ∪ (– ∞; 1] ∪ [2; + ∞) = ℝ.

Từ đó suy ra a < 1.

Giải SBT Toán 10 trang 19 Tập 1

B. Tự luận

Bài 1 trang 19 SBT Toán 10 Tập 1: Cho ba tập hợp A, B, C thỏa mãn A ⊂ C, B ⊂ C và A ∩ B = ∅. Xét tính đúng sai của các mệnh đề sau.

a) Nếu x ∈ A thì x ∈ C;

b) x ∈ A là điều kiện cần để x ∈ C;

c) x ∈ B là điều kiện đủ để x ∈ C;

d) Nếu x ∈ A thì x ∉ B;

e) x ∈ B là điều kiện đủ để x ∉ A.

Lời giải:

a) Vì A ⊂ C nên mọi phần tử của A đều là phần tử của C nên x ∈ A thì x ∈ C, mệnh đề a) đúng.

b) Mệnh đề “Nếu x ∈ A thì x ∈ C” là mệnh đề đúng (theo câu a), do đó, “x ∈ A là điều kiện đủ để x ∈ C”, vậy b) sai.

c) Vì B ⊂ C nên mọi phần tử của B đều là phần tử của C nên x ∈ B thì x ∈ C, ta có mệnh đề đúng là “Nếu x ∈ B thì x ∈ C” hay “x ∈ B là điều kiện đủ để x ∈ C”, do đó c) đúng.

d) Do A ∩ B = ∅, nên A và B là hai tập rời nhau hay mọi phần tử của A đều khác các phần tử trong B, khi đó ta có “Nếu x ∈ A thì x ∉ B” là mệnh đề đúng, vậy d) đúng.

e) Do A ∩ B = ∅, nên A và B là hai tập rời nhau hay mọi phần tử của A đều khác các phần tử trong B, khi đó ta có “Nếu x ∈ B thì x ∉ A” là mệnh đề đúng, do đó mệnh đề còn được phát biểu dưới dạng “x ∈ B là điều kiện đủ để x ∉ A”, vậy e) đúng.

Bài 2 trang 19 SBT Toán 10 Tập 1: Cho tập hợp A = {1; 2}. Tìm tất cả các tập hợp B thỏa mãn A ∪ B = {1; 2; 3}.

Lời giải:

Ta có: A = {1; 2} và A ∪ B = {1; 2; 3}, mà 3 ∉ A, do đó 3 ∈ B, hơn nữa B ⊂ {1; 2; 3}.

Do đó, B là các tập con chứa phần tử 3 của tập {1; 2; 3}, đó là các tập: {3}, {1; 3}, {2; 3}, {1; 2; 3}.

Vậy các tập hợp B thỏa mãn yêu cầu là: {3}, {1; 3}, {2; 3}, {1; 2; 3}.

Bài 3 trang 19 SBT Toán 10 Tập 1: Cho hai tập hợp A = {1; 2; 3; 4}, B = {3; 4; 5}. Tìm tất cả các tập hợp M thỏa mãn M ⊂ A và M ∩ B = ∅.

Lời giải:

Do M ∩ B = ∅ nên M và B là hai tập hợp rời nhau hay mọi phần tử của tập hợp M đều khác các phần tử trong tập hợp B, do đó tập hợp M không chứa các phần tử 3; 4; 5. (1)

Lại có M ⊂ A, do đó mọi phần tử của M đều là phần tử của A nên M có thể chứa các phần tử 1; 2; 3; 4. (2).

Từ (1) và (2) suy ra M chỉ có thể chứa các phần tử 1; 2.

Do đó, M = {1}, M = {2}, M = {1; 2}.

Lại có ∅ ⊂ A và ∅ ∩ B = ∅, do đó M = ∅.

Vậy các tập hợp M thỏa mãn là: ∅, {1}, {2}, {1; 2}.

Bài 4 trang 19 SBT Toán 10 Tập 1: Một học có 36 học sinh, trong đó 20 người thích bóng rổ, 14 người thích bóng bàn và 10 người không thích môn nào trong hai môn thể thao này.

a) Có bao nhiêu học sinh của thích cả hai môn trên?

b) Có bao nhiêu học sinh của thích bóng rổ nhưng không thích bóng bàn?

Lời giải:

Kí hiệu A là tập hợp các học sinh của lớp, B = {x ∈ A | x thích bóng rổ},

C = {x ∈ A | x thích bóng bàn}, D = {x ∈ A | x không thích môn nào trong hai môn}.

Theo giả thiết, ta có: n(A) = 36, n(B) = 20, n(C) = 14 và n(D) = 10.

Sách bài tập Toán 10 Bài tập cuối chương 1 - Chân trời sáng tạo (ảnh 1)

a) Số học sinh thích một trong hai môn là:

n(B ∪ C) = n(A) – n(D) = 36 – 10 = 26 (bạn).

Số học sinh thích cả hai môn thể thao trên là:

n(B ∩ C) = n(B) + n(C) – n(B ∪ C) = 20 + 14 – 26 = 8 (bạn).

b) Số học sinh thích bóng rổ nhưng không thích bóng bàn là:

n(B \ C) = n(B) – n(B ∩ C) = 20 – 8 = 12 (bạn).   

Xem thêm các bài giải SBT Toán 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 3: Các phép toán trên tập hợp

Bài 1: Bất phương trình bậc nhất hai ẩn

Bài 2: Hệ bất phương trình bậc nhất hai ẩn

Bài tập cuối chương 2

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Lý thuyết Toán lớp 6 Chương 2 (Chân trời sáng tạo 2023): Số nguyên hay, chi tiết

Next post

11 câu Trắc nghiệm Hình vuông – Tam giác đều – Lục giác đều (Chân trời sáng tạo) có đáp án 2023 – Toán 6

Bài liên quan:

20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10

Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10

Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới

Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10

Trắc nghiệm Toán 10 Kết nối tri thức có đáp án

Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)

Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10

Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  2. Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  3. Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới
  4. Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10
  5. Trắc nghiệm Toán 10 Kết nối tri thức có đáp án
  6. Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)
  7. Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10
  8. Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề
  9. Giáo án Toán 10 Kết nối tri thức (cả năm) mới nhất 2023
  10. Chuyên đề Toán 10 Kết nối tri thức | Giải bài tập Chuyên đề học tập Toán 10 hay, chi tiết
  11. Sách bài tập Toán 10 Kết nối tri thức | Giải SBT Toán 10 | Giải sách bài tập Toán 10 Tập 1, Tập 2 hay nhất | SBT Toán 10 Kết nối tri thức | SBT Toán 10 KNTT
  12. Tổng hợp Lý thuyết Toán lớp 10 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 10 | Tổng hợp kiến thức Toán 10 chương trình mới
  13. Giải sgk Toán 10 Kết nối tri thức | Giải Toán 10 | Giải Toán lớp 10 | Giải bài tập Toán 10 hay nhất | Giải Toán 10 Tập 1, Tập 2 Kết nối tri thức
  14. Sách bài tập Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  15. Giải SGK Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  16. 20 câu Trắc nghiệm Tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  17. Lý thuyết Tập hợp và các phép toán trên tập hợp (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  18. Bài giảng điện tử Tập hợp và các phép toán trên tập hợp | Kết nối tri thức Giáo án PPT Toán 10
  19. Giáo án Toán 10 Bài 2 (Kết nối tri thức 2023): Tập hợp và các phép toán trên tập hợp
  20. Sách bài tập Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  21. Giải SGK Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  22. 30 câu Trắc nghiệm Chương 1: Mệnh đề và tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  23. Lý thuyết Toán 10 Chương 1 (Kết nối tri thức 2023): Mệnh đề và Tập hợp hay, chi tiết
  24. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 1
  25. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  26. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  27. 20 câu Trắc nghiệm Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  28. Lý thuyết Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  29. Bài giảng điện tử Bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  30. Giáo án Toán 10 Bài 3 (Kết nối tri thức 2023): Bất phương trình bậc nhất hai ẩn
  31. Sách bài tập Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  32. Giải SGK Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  33. Lý thuyết Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  34. Bài giảng điện tử Hệ bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  35. Giáo án Toán 10 Bài 4 (Kết nối tri thức 2023): Hệ bất phương trình bậc nhất hai ẩn
  36. 20 câu Trắc nghiệm Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  37. Sách bài tập Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  38. Giải SGK Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  39. Lý thuyết Toán 10 Chương 2 (Kết nối tri thức 2023): Bất phương trình và hệ phương trình bậc nhất hai ẩn hay, chi tiết
  40. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 2
  41. 30 câu Trắc nghiệm Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  42. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  43. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  44. Lý thuyết Giá trị lượng giác của một góc từ 0 đến 180 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  45. Bài giảng điện tử Giá trị lượng giác của một góc từ 0 độ đến 180 độ | Kết nối tri thức Giáo án PPT Toán 10
  46. Giáo án Toán 10 Bài 5 (Kết nối tri thức 2023): Giá trị lượng giác của một góc từ 0 độ đến 180 độ
  47. 20 câu Trắc nghiệm Giá trị lượng giác của 1 góc từ 0° đến 180° (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  48. Sách bài tập Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0° đến 180°
  49. Giải SGK Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0 đến 180
  50. Lý thuyết Hệ thức lượng trong tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  51. Bài giảng điện tử Hệ thức lượng trong tam giác | Kết nối tri thức Giáo án PPT Toán 10
  52. Giáo án Toán 10 Bài 6 (Kết nối tri thức 2023): Hệ thức lượng trong tam giác

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán