Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 10

Giải SGK Toán 10 Bài 4 (Chân trời sáng tạo): Ba đường conic trong mặt phẳng tọa độ

By admin 15/10/2023 0

Giải bài tập Toán lớp 10 Bài 4: Ba đường conic trong mặt phẳng tọa độ

1. Elip

Giải toán lớp 10 trang 63 Tập 2 Chân trời sáng tạo

Khởi động trang 63 Toán lớp 10:

Khởi động trang 63 Toán lớp 10 Tập 2 | Chân trời sáng tạo (ảnh 1)

Lời giải:

Qua bài học ta thấy rằng hình dạng của các đường là phương trình chính tắc của chúng như sau:

(E) có tên gọi là elip, phương trình: x2a2+y2b2=1

(H) có tên gọi là hypebol, phương trình: x2a2−y2b2=1

(P) có tên gọi là parabol, phương trình: y2=2px

Giải toán lớp 10 trang 64 Tập 2 Chân trời sáng tạo

Khám phá 1 trang 64 Toán lớp 10: Lấy một tấm bìa, ghim hai cái đinh lên đó tại hai điểm F1 và F2. Lấy một vòng dây kín không đàn hồi  có độ dài lớn hơn hai lần đoạn F1F2. Quàng vòng dây đó qua hai chiếc đinh và kéo căng tại một điểm M nào đó. Tựa đầu bút chì vào trong vòng dây tại điểm M rồi di chuyển sao cho dây luôn luôn căng. Đầu bút chì vạch lên tấm bìa một đường mà người ta gọi là đường elip.

Cho biết 2c là khoảng cách F1F2 và 2a+2c là độ dài của vòng dây.

Tính tổng hai khoảng cách F1M và F2M

Khám phá 1 trang 64 Toán lớp 10 Tập 2 | Chân trời sáng tạo (ảnh 1)

Lời giải:

Ta có chiều dài vòng dây là:

MF1+F1F2+F2M=2a+2c⇒MF1+F2M=2a+2c−F1F2=2a

Vậy tổng khoảng cách F1M và F2M là 2a

Khám phá 2 trang 64 Toán lớp 10: Cho elip (E) có các tiêu điểm F1 và F2 và đặt F1F2=2c. Chọn hệ trục tọa độ Oxy sao cho F1(−c;0) và F2(c;0)

Xét điểm M(x;y)

a) Tính F1M và F2M theo x, y và c

b) Giải thích phát biểu sau:

M(x;y)∈(E)⇔(x+c)2+y2+(x−c)2+y2=2a

Khám phá 2 trang 64 Toán lớp 10 Tập 2 | Chân trời sáng tạo (ảnh 1)

Phương pháp giải:

Sử dụng phương pháp tọa độ trong mặt phẳng

Lời giải:

a) Ta có:

F1M→=(x+c;y)⇒F1M=(x+c)2+y2

F2M→=(x−c;y)⇒F2M=(x−c)2+y2

b) Ta có M(x;y)∈(E) nên F1M+F2M=2a⇔(x+c)2+y2+(x−c)2+y2=2a

Giải toán lớp 10 trang 65 Tập 2 Chân trời sáng tạo

Thực hành 1 trang 65 Toán lớp 10: Viết phương trình chính tắc của elip trong hình 4

Thực hành 1 trang 65 Toán lớp 10 Tập 2 | Chân trời sáng tạo (ảnh 1)

Phương pháp giải:

Phương trình chính tắc của elip có dạng x2a2+y2b2=1 với M(x;y)∈(E);b=a2−c2

Lời giải:

Dựa vào hình vẽ ta thấy a=3,c=2⇒b=a2−c2=32−22=5

Vậy phương trình chính tắc của elip có dạng x29+y25=1

Vận dụng 1 trang 65 Toán lớp 10: Một đường hầm có mặt các hình nửa Elip cao 4 m, rộng 10 m (hình 5). Viết phương trình chính tắc của elip đó.

Phương pháp giải:

Phương trình chính tắc của elip có dạng x2a2+y2b2=1 với M(x;y)∈(E);b=a2−c2

Lời giải:

Chiều cao là 4 m tương ứng với c=4

Chiều rộng bằng 10 m nên 2a=10⇒a=5

Suy ra b=a2−c2=52−42=3

Vậy phương trình chính tắc của elip có dạng x225+y29=1

2. Hypebol

Khám phá 3 trang 65 Toán lớp 10: Lấy một tấm bìa, trên đó đánh dấu hai điểm F1 và F2. Lấy một cây thước thẳng với mép thước  AB có chiều dài d và một đoạn dây không đàn hồi có chiều dài l sao cho d−l=2a nhỏ hơn khoảng cách F1F2 (hình 6a).

Đính một đầu dây vào đầu A của thước, dùng đinh ghim đầu dây còn lại vào điểm F2. Đặt thước sao cho đầu B của thước trùng với điểm F1. Tựa đầu bút chì vào dây, di chuyển điểm M trên tấm bìa và giữ sao cho dây luôn căng, đoạn AM ép sát vào thước, khi đó M sẽ gạch lên tấm bìa một đường (H) (xem hình 6b)

a) Chứng tỏ rằng khi M di động, ta luôn có MF1−MF2=2a

b) Vẫn đính một đầu dây vào đầu A của thước nhưng đổi chỗ cố định đầu dây còn lại vào F1, đầu B của thước trùng với F2 sao cho đoạn thẳng BA có thể quay quanh F2và làm tương tự như lần đầu để bút chì M vẽ được một nhánh khác của đường (H) (hình 6c). Tính MF2−MF1

Khám phá 3 trang 65 Toán lớp 10 Tập 2 | Chân trời sáng tạo (ảnh 1)

Lời giải:

a) Khi điểm M trùng với điểm A ta có:

MF1−MF2=AF1−AF2=AB−AF2=d−l=2a

b) Tương tự khi điểm M trùng với điểm A ta có:

MF2−MF1=AF2−AF1=AB−AF1=d−l=2a

Giải toán lớp 10 trang 66 Tập 2 Chân trời sáng tạo

Khám phá 4 trang 66 Toán lớp 10: Cho hyperbol  (H) có các tiêu điểm F1 và F2 và đặt điểm F1F2=2c. Chọn hệ trục tọa độ Oxy sao cho F1(−c;0) và F2(c;0)

Xét điểm M(x;y)

a) Tính F1M và F2M theo x, y và c

b) Giải thích phát biểu sau:

M(x;y)∈(H)⇔|(x+c)2+y2−(x−c)2+y2|=2a

Khám phá 4 trang 66 Toán lớp 10 Tập 2 | Chân trời sáng tạo (ảnh 1)

Phương pháp giải:

Sử dụng phương pháp tọa độ trong mặt phẳng

Lời giải:

a) Ta có:

F1M→=(x+c;y)⇒F1M=(x+c)2+y2

F2M→=(x−c;y)⇒F2M=(x−c)2+y2

b) Ta có M(x;y)∈(E) nên |F1M−F2M|=2a⇔|(x+c)2+y2−(x−c)2+y2|=2a

Giải toán lớp 10 trang 67 Tập 2 Chân trời sáng tạo

Thực hành 2 trang 67 Toán lớp 10: Viết phương trình chính tắc của hypebol có tiêu cự bằng 10 và độ dài trục nhỏ bằng 6.

Phương pháp giải:

Phương trình chính tắc của hypebol có dạng x2a2−y2b2=1 với M(x;y)∈(H);b=c2−a2

Lời giải:

Ta có: 2c=10⇒c=5,2b=6⇒b=3

Suy ra a=c2−b2=52−32=4

Vậy phương trình chính tắc của hypebol có dạng x216−y29=1

Vận dụng 2 trang 67 Toán lớp 10: Một tháp làm nguội của một nhà cát có mặt cắt là một hypebol có phương trình x2272−y2402=1 (hình 9). Cho biết chiều cao của tháp là 120 m và khoảng cách từ nóc tháp đến tâm đối xứng của hypebol  bằng một nửa khoảng cách từ tâm đối xứng đến đáy. Tìm bán kính đường tròn nóc và bán kính đường tròn đáy của tháp.

Vận dụng 2 trang 67 Toán lớp 10 Tập 2 | Chân trời sáng tạo (ảnh 1)

Phương pháp giải:

Bước 1: Xác định khoảng cách từ tâm đến đỉnh tháp và đáy tháp

Bước 2: Từ kết quả vừa tìm thay vào phương trình hypebol y bằng kết quả đó tìm x (Chỉ lấy kết quả dương)

Lời giải:

Gọi khoảng cách từ tâm đối xứng đến đỉnh tháp là z

Suy ra khoảng cách từ tâm đối xứng đến đáy tháp là 2z

Ta có z+2z=120⇒z=40

Thay y=40 vào phương trình x2272−y2402=1 ta tìm được x=272

Thay y=80 vào phương trình x2272−y2402=1 ta tìm được x=275

Vậy bán kính đường tròn nóc và bán kính đường tròn đáy của tháp lần lượt là 272 và 275

3. Parabol

Giải toán lớp 10 trang 68 Tập 2 Chân trời sáng tạo

Khám phá 5 trang 68 Toán lớp 10: Trong mặt phẳng Oxy, cho điểm F(0;12), đường thẳng Δ:y+12=0 và điểm M(x;y). Để tìm hệ thức giữa x và y sao cho M cách đều  F và Δ, một học sinh đã làm như sau:

+) Tính MF và MH (với H là hình chiếu của M trên Δ):

MF=x2+(y−12)2,MH=d(M,Δ)=|y+12|

+) Điều kiện để M cách đều F  và Δ:

MF=d(M,Δ)⇔x2+(y−12)2=|y+12|⇔x2+(y−12)2=(y+12)2⇔x2=2y⇔y=12x2(∗)

Hãy cho biết tên đồ thị (P) của hàm số (*) vừa tìm được.

Khám phá 5 trang 68 Toán lớp 10 Tập 2 | Chân trời sáng tạo (ảnh 1)

Lời giải:

Đồ thị của hàm số (*) vừa tìm được có dạng là hàm số bậc 2 khuyết b và c tập hợp các điểm cách đều nhau qua một đường thẳng, đồ thị của hàm bậc 2 này có tên gọi là parabol.

Khám phá 6 trang 68 Toán lớp 10: Cho parabol (P) có tiêu điểm F  và đường chuẩn Δ. Gọi khoảng cách từ tiêu điểm đến đường chuẩn là p, hiển nhiên p>0

Chọn hệ trục tọa độ Oxy sao cho F(p2;0) và Δ:x+p2=0

Xét điểm M(x;y)

a) Tính MF và d(M,Δ)

b) Giải thích biểu thức sau:

M(x;y)∈(P)⇔(x−p2)2+y2=|x+p2|

Khám phá 6 trang 68 Toán lớp 10 Tập 2 | Chân trời sáng tạo (ảnh 1)

Phương pháp giải:

Sử dụng phương pháp tọa độ trong mặt phẳng

Lời giải:

a) Ta có: FM→=(x−p2;y)⇒MF=|FM→|=(x−p2)2+y2

d(M,Δ)=|x+p2|1=|x+p2|

b) M thuộc parabol (P) nên M cách đều F và Δ

Suy ra MF=d(M,Δ)⇔(x−p2)2+y2=|x−p2|

Giải toán lớp 10 trang 70 Tập 2 Chân trời sáng tạo

Thực hành 3 trang 70 Toán lớp 10: Viết phương trình chính tắc của parabol (P) có đường chuẩn Δ:x+1=0

Phương pháp giải:

Bước 1: Từ phương trình đường chuẩn tìm tọa độ của tiêu điểm (phương trình đường chuẩn có dạng x+p2=0

Bước 2: Viết phương trình chính tắc của parabol có dạng y2=2px với M(x;y)∈(P)

Lời giải:

Từ phương trình đường chuẩn Δ:x+1=0 ta có tiêu điểm F(1;0)

Phương trình chính tắc của parabol có dạng y2=2x

Vận dụng 3 trang 70 Toán lớp 10: Một cổng chào có hình parabol cao 10 m và bề rộng của cổng tại chân cổng là 5 m. Tính bề rộng của cổng tại chỗ cách đỉnh 2 m

Phương pháp giải:

Bước 1: Gọi phương trình của parabol một cách tổng quát

Bước 2: Thay các giả thiết tìm tiêu điểm

Bước 3: Thay x=2 vào phương trình chính tắc tìm y

Lời giải:

Vẽ lại parabol và chọn hệ trục tọa độ như hình dưới

Gọi phương trình của parabol là y2=2px

Ta có chiều cao của cổng OH=BK=10, chiều rộng tại chân cổng BD=2BH=5

Vậy điểm B có tọa độ là B(10;52)

Thay tọa độ điểm B vào phương trình parabol ta có:

(52)2=2p.10⇒p=516, suy ra phương trình parabol có dạng y2=58x

Thay x=2 vào phương trình y2=58x ta tìm được y=52

Vậy bề rộng của cổng tại chỗ cách đỉnh 2 m là 5 m

Bài tập (trang 70, 71)

Bài 1 trang 70 Toán lớp 10: Viết phương trình chính tắc của:

a) Elip có trục lớn bằng 20 và trục nhỏ bằng 16

b) Hypebol có tiêu cự 2c=20 và độ dài trục thực 2a=12

c) Parabol có tiêu điểm F(12;0)

Phương pháp giải:

a)       Bước 1: Từ giải thiết xác định a, b, c

Bước 2: Phương trình chính tắc của elip có dạng x2a2+y2b2=1 với M(x;y)∈(E);b=a2−c2

b) Phương trình chính tắc của hypebol có dạng x2a2−y2b2=1 với M(x;y)∈(H);b=c2−a2

c) Phương trình chính tắc của parabol có dạng y2=2px với \(M(x;y) \in 

Lời giải:

a) Ta có 2a=20⇒a=10,2c=16⇒c=8, suy ra b=a2−c2=102+82=6

Vậy phương trình chính tắc của elip có dạng x2100+y236=1

b) Ta có 2a=12⇒a=6,2c=20⇒c=10, suy ra b=c2−a2=102−62=8

Vậy phương trình chính tắc của elip có dạng x2100−y264=1

c) Ta có tiêu điểm F(12;0) suy ra p=1

Vậy phương trình chính tắc của parabol là y2=2x

Bài 2 trang 70 Toán lớp 10: Viết phương trình chính tắc của các đường conic dưới đây. Gọi tên và tìm tọa độ của các tiêu điểm của chúng

a) (C1):4x2+16y2=1

b) (C2):16x2−4y2=144

c) (C3):x=18y2

Phương pháp giải:

Bước 1: Xác định dạng phương trình của đường conic nào

          +) Có dạng ax2+by2=1 là dạng đường elip

          +) Có dạng ax2−by2=1 là dạng đường hypebol

          +) Có dạng y2=ax là dạng đường parabol

Bước 2: Đưa về phương trình chính tắc và tìm tọa độ biết phương trình chính tắc có dạng

          +) x2a2+y2b2=1 là đường elip

          +) x2a2−y2b2=1 là đường hypebol

          +) y2=2px là đường parabol

Bước 3: Xác định tiêu điểm của các đường conic

          +) Elip: F1(−c;0) và F2(c;0)

          +) Hypebol: F1(−c;0) và F2(c;0)

          +) Parabol: F(p2;0)

Lời giải:

a) Ta thấy phương trình có dạng ax2+by2=1 nên phương trình (C1):4x2+16y2=1 là phương trình của đường elip

Từ phương trình (C1):4x2+16y2=1 ta có phương trình chính tắc là (C1):x214+y2116=1

Từ phương trình chính tắc ta có: a=12,b=14⇒c=a2−b2=(12)2−(14)2=34

Suy ra tiêu điểm của elip này là F1(−34;0) và F2(34;0)

b) Ta thấy phương trình có dạng ax2−by2=1 nên phương trình (C2):16x2−4y2=144 là phương trình của đường hypebol

Từ phương trình (C2):16x2−4y2=144 ta có phương trình chính tắc là (C1):x29−y216=1

Từ phương trình chính tắc ta có: a=3,b=4⇒c=a2+b2=32+42=5

Suy ra tiêu điểm của hypebol này là F1(−5;0) và F2(5;0)

c) Phương trình (C3):x=18y2 có dạng y2=ax nên phương trình này là phương trình của parabol

Ta có phương trình chính tắc là y2=8x

Từ phương trình chính tắc ta có: 2p=8⇒p=4

Suy ra tiêu điểm là F(2;0)

Bài 3 trang 70 Toán lớp 10: Để cắt một bảng hiệu quảng cáo hình Elip có trục lớn là 80 cm và trục nhỏ là 40 cm từ một tấm ván ép hình chữ nhật có kích thước là 80 cm x 40 cm, người ta vẽ hình elip đó trên tấm ván ép như hướng dẫn sau:

Chuẩn bị

– Hai cái đinh, một vòng dây kín không đàn hồi, bút chì.

Thực hiện

– Xác định vị trí (hai tiêu điểm của elip) và ghim hai cái đinh trên 2 điểm đó trên tấm ván.

– Quàng vòng dây qua hai chiếc đinh và kéo căng tại một điểm M nào đó. Tựa đầu bút chì vào trong vòng dây tại điểm M  rồi di chuyển sao cho dây luôn luôn căng. Đầu bút chì vạch lên tấm bìa một đường elip (Xem minh họa trong hình 15).

Phải ghim hai cái đinh cách các mép tấm bìa bao nhiêu xentimets và lấy vòng dây có độ dài là bao nhiêu?

Bài 3 trang 70 Toán lớp 10 Tập 2 | Chân trời sáng tạo (ảnh 1)

Phương pháp giải:

Bước 1: Từ giả thiết xác định a, c

Bước 2: Xác định vị trí đinh cách mép biết được tính bằng a−c

Bước 3: Xác định chiều dài vòng dây, biết chiều dài vòng dây là 2a+2c

Lời giải:

Từ giải thiết ta có: 2a=80⇒a=40,2c=40⇒c=20

Suy ra vị trí đinh cách mép là a−c=40−20=20 cm

Chiều dài vòng dây là 2a+2c=2.40+2.20=120 cm

Vậy phải ghim hai cái đinh cách các mép tấm bìa 20 cm và lấy vòng dây có độ dài là 120 cm

Giải toán lớp 10 trang 71 Tập 2 Chân trời sáng tạo

Bài 4 trang 71 Toán lớp 10: Một nhà vòm chứa máy bay có mặt cắt hình nửa elip cao 8 m, rộng 20 m (hình 16)

a) Chọn hệ tọa độ thích hợp và viết phương trình của elip nói trên

b) Tính khoảng cách phương thẳng đứng từ một điểm cách chân tường 5 m đến nóc nhà vòm

Bài 4 trang 71 Toán lớp 10 Tập 2 | Chân trời sáng tạo (ảnh 1)

Phương pháp giải:

a) Bước 1: Chọn hệ trục tọa độ Oxy với gốc tọa độ tại tâm đáy nhà vòm

Bước 2: Viết phương trình chính tắc của elip có dạng x2a2+y2b2=1 với M(x;y)∈(E);b=a2−c2

b) Bước 1: Từ dữ kiện cách chân tường 5 m, xác định cách gốc tạo độ bao nhiêu (x=?)

  Bước 2: Thay x vừa tìm được vào phương trình chính tắc tìm y

Lời giải:

a) Chọn hệ trục tọa độ Oxy với gốc tọa độ tại tâm đáy nhà vòm, trục tung thẳng đứng

Bài 4 trang 71 Toán lớp 10 Tập 2 | Chân trời sáng tạo (ảnh 2)

Nhà vòm có dạng elip nên có phương trình chính tắc là x2a2+y2b2=1   (với a,b>0)

Ta có chiều cao 8 m nên OA=h=5, chiều rộng của vòm là 20 m, suy ra BC=2OB=20⇒OB=10

Từ đó ta có tọa độ các điểm: C(10;0),A(0;5)

Thay hai điểm đó vào phương trinh chính tắc ta có:

{102a2+02b2=102a2+52b2=1⇒{a=10b=5

Suy ra, phương trình miêu tả hình dáng nhà vòm là x2100+y225=1

b) Điểm đó cách chân tưởng 5 m tương ứng cách tâm 5 m (vì từ tâm vòm đến tưởng là 10 m)

Thay x=5 vào phương trình x2100+y225=1, ta tìm được y=532

Vậy khoảng cách phương thẳng đứng từ một điểm cách chân tường 5 m đến nóc nhà vòm là 532 m

Bài 5 trang 71 Toán lớp 10: Một tháp làm nguội của một nhà máy có mặt cắt là hình hyperbol có phương trình x2282−y2422=1 (hình 17). Biết chiều cao của tháp là 150 m và khoảng cách từ nóc tháp đến tâm đối xứng của hypebol là 23 khoảng cách từ tâm đối xứng đến đáy. Tính bán kính nóc và bán kính đáy của tháp

Bài 5 trang 71 Toán lớp 10 Tập 2 | Chân trời sáng tạo (ảnh 1)

Phương pháp giải:

Bước 1: Xác định khoảng cách từ tâm đến đỉnh tháp và đáy tháp

Bước 2: Từ kết quả vừa tìm thay vào phương trình hypebol y bằng kết quả đó tìm x (Chỉ lấy kết quả dương)

Lời giải:

Gọi khoảng cách từ tâm đối xứng đến đáy tháp là z

Suy ra khoảng cách từ tâm đối xứng đến nóc tháp là 23z

Ta có z+23z=150⇒z=90

Thay y=90 vào phương trình x2282−y2422=1 ta tìm được x=4274

Thay y=60 vào phương trình x2282−y2422=1 ta tìm được x=4149

Vậy bán kính đường tròn nóc và bán kính đường tròn đáy của tháp lần lượt là 4149 m và 4274m

Bài 6 trang 71 Toán lớp 10: Một cái cầu có dây cáp treo như hình vẽ parabol, cầu dài 100 m và được nâng đỡ bởi những thanh thẳng đứng treo từ cáp xuống, thanh dài nhất là 30m, thanh ngắn nhất là 6m (hình 18). Tính chiều dài của thanh cách điểm giữa cầu 18m

Bài 6 trang 71 Toán lớp 10 Tập 2 | Chân trời sáng tạo (ảnh 1)

Phương pháp giải:

Bước 1: Gắn hệ trục tọa độ với gốc tọa độ tại điểm giữa cầu

Bước 2: Xác định phương trình mô tả hình dạng của cầu

Bước 3: Thay giả thiết vào phương trình vừa tìm được để tìm chiều dài thanh treo cầu

Lời giải:

Chọn hệ tọa độ Oxy với gốc tọa độ tại điểm trên của thanh ngắn giữa cầu, trục tung tương ứng là mặt đường của cầu, vẽ lại hình như dưới đây

Bài 6 trang 71 Toán lớp 10 Tập 2 | Chân trời sáng tạo (ảnh 2)

Ta nhận thấy cầu có dạng parabol nên gọi phương trình mô tả hình dạng cầu là y2=2px

Cầu dài 100 m tương ứng AB=2OB=100⇒OB=50, thanh dài nhất dài 30 m

Từ đó ta có tọa độ điểm C(24;50)

Thay tọa độ C vào phương trình y2=2px ta có 2500=2p.24⇒p=62512

Ta có phương trình mô tả cây cầu là y2=6256x

Tại thanh cách điểm giữa cầu 18m thì x=18 ta có 182=6256.x⇒x≈3,11

Vậy chiều dài của thanh cách điểm giữa cầu 18m gần bằng 3,11 m

Giải toán lớp 10 trang 73 Tập 2 Chân trời sáng tạo

Thử thách trang 73 Toán lớp 10: Áp dụng tính chất quang học của parabol để giải quyết vẫn đề sau đây:

Một đèn pin có chóa đèn có mặt cắt hình parabol với kích thước như trong hình 21.

a) Chọn hệ trục tọa độ Oxy sao cho gốc O là đỉnh của parabol và trục Ox đi qua tiêu điểm. Viết phương trình của parabol trong hệ tọa độ vừa chọn.

b) Để đèn chiếu được xa phải đặt bóng đèn cách đỉnh của chóa đèn bao nhiêu xentimét

Thử thách trang 73 Toán lớp 10 Tập 2 | Chân trời sáng tạo (ảnh 1)

Phương pháp giải:

a) Bước 1: Gọi phương trình parabol tổng quát y2=2px

 Bước 2: Từ giả thiết x=3,2y=18 thay vào phương trình tìm phương trình

b) Xác định tọa độ tiêu điểm

Lời giải:

a) Vẽ lại hình vẽ như dưới đây

Thử thách trang 73 Toán lớp 10 Tập 2 | Chân trời sáng tạo (ảnh 2)

Ta có AB=18,x=3⇒A(3;9)

Gọi phương trình parabol tổng quát y2=2px

Thay tọa độ điểm A vào phương trình ta có: 92=2p.3⇒p=272

Vậy phương trình parabol trên hệ trục tọa độ vừa chọn là y2=27x

b) Từ câu a) ta có: p=272

Suy ra tiêu điểm của parabol là F(274;0)

Vậy để đèn chiếu được xa phải đặt bóng đèn cách đỉnh của chóa đèn 274 xentimét

Xem thêm các bài giải SGK Toán 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 3: Đường tròn trong mặt phẳng tọa độ

Bài 1: Không gian mẫu và biến cố

Bài 2: Xác suất của biến cố

Bài tập cuối chương 10

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Lý thuyết Ước chung và ước chung lớn nhất (Cánh diều 2023) hay, chi tiết | Toán lớp 6

Next post

Vở thực hành Toán 7 Bài 12 (Kết nối tri thức): Tổng các góc trong một tam giác

Bài liên quan:

20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10

Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10

Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới

Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10

Trắc nghiệm Toán 10 Kết nối tri thức có đáp án

Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)

Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10

Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  2. Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  3. Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới
  4. Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10
  5. Trắc nghiệm Toán 10 Kết nối tri thức có đáp án
  6. Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)
  7. Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10
  8. Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề
  9. Giáo án Toán 10 Kết nối tri thức (cả năm) mới nhất 2023
  10. Chuyên đề Toán 10 Kết nối tri thức | Giải bài tập Chuyên đề học tập Toán 10 hay, chi tiết
  11. Sách bài tập Toán 10 Kết nối tri thức | Giải SBT Toán 10 | Giải sách bài tập Toán 10 Tập 1, Tập 2 hay nhất | SBT Toán 10 Kết nối tri thức | SBT Toán 10 KNTT
  12. Tổng hợp Lý thuyết Toán lớp 10 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 10 | Tổng hợp kiến thức Toán 10 chương trình mới
  13. Giải sgk Toán 10 Kết nối tri thức | Giải Toán 10 | Giải Toán lớp 10 | Giải bài tập Toán 10 hay nhất | Giải Toán 10 Tập 1, Tập 2 Kết nối tri thức
  14. Sách bài tập Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  15. Giải SGK Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  16. 20 câu Trắc nghiệm Tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  17. Lý thuyết Tập hợp và các phép toán trên tập hợp (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  18. Bài giảng điện tử Tập hợp và các phép toán trên tập hợp | Kết nối tri thức Giáo án PPT Toán 10
  19. Giáo án Toán 10 Bài 2 (Kết nối tri thức 2023): Tập hợp và các phép toán trên tập hợp
  20. Sách bài tập Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  21. Giải SGK Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  22. 30 câu Trắc nghiệm Chương 1: Mệnh đề và tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  23. Lý thuyết Toán 10 Chương 1 (Kết nối tri thức 2023): Mệnh đề và Tập hợp hay, chi tiết
  24. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 1
  25. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  26. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  27. 20 câu Trắc nghiệm Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  28. Lý thuyết Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  29. Bài giảng điện tử Bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  30. Giáo án Toán 10 Bài 3 (Kết nối tri thức 2023): Bất phương trình bậc nhất hai ẩn
  31. Sách bài tập Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  32. Giải SGK Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  33. Lý thuyết Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  34. Bài giảng điện tử Hệ bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  35. Giáo án Toán 10 Bài 4 (Kết nối tri thức 2023): Hệ bất phương trình bậc nhất hai ẩn
  36. 20 câu Trắc nghiệm Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  37. Sách bài tập Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  38. Giải SGK Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  39. Lý thuyết Toán 10 Chương 2 (Kết nối tri thức 2023): Bất phương trình và hệ phương trình bậc nhất hai ẩn hay, chi tiết
  40. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 2
  41. 30 câu Trắc nghiệm Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  42. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  43. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  44. Lý thuyết Giá trị lượng giác của một góc từ 0 đến 180 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  45. Bài giảng điện tử Giá trị lượng giác của một góc từ 0 độ đến 180 độ | Kết nối tri thức Giáo án PPT Toán 10
  46. Giáo án Toán 10 Bài 5 (Kết nối tri thức 2023): Giá trị lượng giác của một góc từ 0 độ đến 180 độ
  47. 20 câu Trắc nghiệm Giá trị lượng giác của 1 góc từ 0° đến 180° (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  48. Sách bài tập Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0° đến 180°
  49. Giải SGK Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0 đến 180
  50. Lý thuyết Hệ thức lượng trong tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  51. Bài giảng điện tử Hệ thức lượng trong tam giác | Kết nối tri thức Giáo án PPT Toán 10
  52. Giáo án Toán 10 Bài 6 (Kết nối tri thức 2023): Hệ thức lượng trong tam giác

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán