Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 10

Giải SGK Toán 10 Bài 2 (Cánh diều): Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng

By admin 16/10/2023 0

Giải bài tập Toán lớp 10 Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai

Video giải Toán 10 Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai – Cánh diều

Giải Toán 10 trang 39 Tập 1

Câu hỏi khởi động trang 39 Toán lớp 10: Cầu cảng Sydney là một trong những hình ảnh biểu tượng của thành phố Sydney và nước Australia. Độ cao y(m) của một điểm thuộc vòng cung thành cầu cảng Sydney có thể biểu thị theo độ dài x(m) tính từ chân cầu bên trái dọc theo đường nối với chân cầu bên phải như sau (Hình 10):

Câu hỏi khởi động trang 39 Toán lớp 10 Tập 1 I Cánh diều (ảnh 1)

y=−0,00188(x−251,5)2+118

Hàm số y=−0,00188(x−251,5)2+118 có gì đặc biệt?

Lời giải:

Hàm số có đồ thị là một hình parabol, bề lõm quay xuống dưới.

Hình ảnh hình học có tính đối xứng.

I. Hàm số bậc hai

Hoạt động 1 trang 39 Toán lớp 10: Cho hàm số y=−0,00188(x−251,5)2+118.

a) Viết công thức xác định hàm số trên về dạng đa thức theo lũy thừa với số mũ giảm dần của x.

b) Bậc của đa thức trên bằng bao nhiêu?

c) Xác định hệ số của x2, hệ số của x và hệ số tự do.

Phương pháp giải:

a) Phá ngoặc và thu gọn.

b) Tìm số mũ cao nhất.

c) Tìm hệ số gắn với x2, x và hệ số tự do.

Lời giải:

a) Ta có:

y=−0,00188(x−251,5)2+118y=−0,00188.(x2−503x+63252,25)+118y=−0,00188x2+0,94564x−118,91423+118y=−0,00188x2+0,94564x−0,91423

b) Bậc của đa thức là 2

c) Hệ số của x2 là -0,00188

Hệ số của x là 0,94564

Hệ số tự do là -0,91423

Luyện tập vận dụng 1 trang 39 Toán lớp 10: Cho hai ví dụ về hàm số bậc hai.

Phương pháp giải:

Hàm số bậc hai: y=ax2+bx+c trong đó a,b,c là hằng số và a≠0.

Lời giải:

Ví dụ 1: y=2x2−x−1

Ví dụ 2: y=−3x2+1

II. Đồ thị hàm số bậc hai

Hoạt động 2 trang 39 Toán lớp 10: Cho hàm số y=x2+2x−3.

a) Tìm giá trị y tương ứng với giá trị của x trong bảng sau:

x

-3

-2

-1

0

1

y

?

?

?

?

?

b) Vẽ các điểm A(−3;0),B(−2;−3),C(−1;−4),D(0;−3),E(1;0) của đồ thị hàm số y=x2+2x−3 trong mặt phẳng tọa độ Oxy.

c) Vẽ đường cong đi qua 5 điểm A, B, C, D, E. Đường cong đó là đường parabol và cũng chính là đồ thị hàm số y=x2+2x−3 (Hình 11).

 

d) Cho biết tọa độ của điểm thấp nhất và phương trình trục đối xứng của parabol đó. Đồ thị hàm số đó quay bề lõm lên trên hay xuống dưới?

Phương pháp giải:

a) Thay x=−3,x=−2,x=−1,x=0,x=1 vào hàm số.

b) Xác định các điểm trên mặt phẳng.

c) Sử dụng thước hoặc công cụ khác để vẽ đồ thị nối 5 điểm.

d) Tìm điểm thấp nhất trên hình vẽ và đường thẳng x=a với a là hoành độ của điểm thấp nhất.

Lời giải:

a) Thay x=−3 vào hàm số ta được:

y=(−3)2+2.(−3)−3=0. Điền 0 vào ô tương ứng.

Thay x=−2 vào hàm số ta được:

y=(−2)2+2.(−2)−3=−3. Điền −3 vào ô tương ứng.

Thay x=−1 vào hàm số ta được:

y=(−1)2+2.(−1)−3=−4. Điền −4 vào ô tương ứng.

Thay x=0 vào hàm số ta được:

y=−3. Điền −3 vào ô tương ứng.

Thay x=1 vào hàm số ta được:

y=(1)2+2.(1)−3=0. Điền 0 vào ô tương ứng.

Vậy ta có:

x

-3

-2

-1

0

1

y

0

-3

-4

-3

0

b) Các điểm có trong hình 11.

c) Đường cong đi qua 5 điểm là parabol trong hình 11.

d) Từ đồ thị ta thấy điểm thấp nhất là điểm C(-4;-1)

Phương trình trục đối xứng là x=-1

Đồ thị có bề lõm lên trên.

Giải Toán 10 trang 40 Tập 1

Hoạt động 3 trang 40 Toán lớp 10: Cho hàm số y=−x2+2x+3.

a) Tìm tọa độ 5 điểm thuộc đồ thị hàm số trên có hoành độ lần lượt là −1,0,1,2,3 rồi vẽ chúng trong mặt phẳng tọa độ Oxy.

b) Vẽ đường cong đi qua 5 điểm trên. Đường cong đó cũng là đường parabol và là đồ thị của hàm số y=−x2+2x+3 (Hình 12).

 Hoạt động 3 trang 40 Toán lớp 10 Tập 1 I Cánh diều (ảnh 3)

c) Cho biết tọa độ của điểm cao nhất và phương trình trục đối xứng của parabol đó. Đồ thị hàm số đó quay bề lõm lên trên hay xuống dưới?

Phương pháp giải:

a) Từ các điểm trên Ox có hoành độ lần lượt là −1,0,1,2,3, kẻ các đường thẳng song song với Oy, xác định giao điểm với đồ thị rồi tìm tung độ của các điểm đó.

b) Vẽ đường cong đi qua 5 điểm trên.

c) Tìm tọa độ của điểm cao nhất và phương trình trục đối xứng của parabol. Xác định bề lõm.

Lời giải:

a) Từ các điểm trên Ox có hoành độ lần lượt là −1,0,1,2,3, kẻ các đường thẳng song song với Oy, giao điểm với độ thị lần lượt là: A, B, I, C, D

 Hoạt động 3 trang 40 Toán lớp 10 Tập 1 I Cánh diều (ảnh 1)

b) Vẽ đồ thị:

 Hoạt động 3 trang 40 Toán lớp 10 Tập 1 I Cánh diều (ảnh 2)

 c) Điểm cao nhất là điểm I(1;4)

Phương trình trục đối xứng là đường thẳng x=1.

Đồ thị hàm số đó quay bề lõm xuống dưới.

Giải Toán 10 trang 41 Tập 1

Luyện tập vận dụng 2 trang 41 Toán lớp 10: Vẽ đồ thị mỗi hàm số bậc hai sau:

a) y=x2−4x−3

b) y=x2+2x+1

c) y=−x2−2

Phương pháp giải:

Bước 1: Xác định tọa độ đỉnh (−b2a;−Δ4a)

Bước 2: Vẽ trục đối xứng x=−b2a

Bước 3: Xác định một số điểm đặc biệt, chẳng hạn giao điểm với trục tung (0;c) và trục hoành (nếu có), điểm đối xứng với điểm (0;c) qua trục x=−b2a.

Bước 4: Vẽ đường parabol đi qua các điểm đã xác định ta nhận được đồ thị hàm số y=ax2+bx+c.

Lời giải:

a) Đồ thị hàm số có đỉnh I(2;−7)

Trục đối xứng là x=2

Giao điểm của parabol với trục tung là (0;-3)

Điểm đối xứng với điểm (0;-3) qua trục đối xứng x=2 là (4;3)

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:

 Luyện tập vận dụng 2 trang 41 Toán lớp 10 Tập 1 I Cánh diều (ảnh 1)

b) Đồ thị hàm số có đỉnh I(−1;0)

Trục đối xứng là x=-1

Giao điểm của parabol với trục tung là (0;1)

Giao điểm của parabol với trục hoành là (-1;0)

Điểm đối xứng với điểm (0;1) qua trục đối xứng x=-1 là (-2;1)

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:

 

c) Đồ thị hàm số có đỉnh I(0;−2)

Trục đối xứng là x=0

Giao điểm của parabol với trục tung là (0;-2)

Cho x=1=>y=-3

=> Điểm A(1;-3) thuộc đồ thị.

Điểm đối xứng với A qua trục đối xứng x=0 là điểm B(-1;-3).

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:

 Luyện tập vận dụng 2 trang 41 Toán lớp 10 Tập 1 I Cánh diều (ảnh 2)

Hoạt động 4 trang 41 Toán lớp 10: a) Quan sát đồ thị hàm số bậc hai y=x2+2x−3 trong Hình 11. Xác định khoảng đồng biến, khoảng nghịch biến của hàm số và lập bảng biến thiên của hàm số đó.

 Hoạt động 4 trang 41 Toán lớp 10 Tập 1 I Cánh diều (ảnh 2) 

b) Quan sát đồ thị hàm số bậc hai y=−x2+2x+3 trong Hình 12. Xác định khoảng đồng biến, khoảng nghịch biến của hàm số và lập bảng biến thiên của hàm số đó.

 Hoạt động 4 trang 41 Toán lớp 10 Tập 1 I Cánh diều (ảnh 1)

Phương pháp giải:

– Khoảng đồng biến: Khoảng mà đồ thị đi lên.

– Khoảng nghịch biến: Khoảng mà đồ thị đi xuống.

– Lập bảng biến thiên.

Lời giải:

a) Từ đồ thị ta thấy đồ thị hàm số đi lên trong khoảng (−1;+∞) nên hàm số đồng biến trong khoảng (−1;+∞). Trong khoảng (−∞;−1)  thì hàm số nghich biến.

Bảng biến thiên:

  

b) Từ đồ thị ta thấy đồ thị hàm số đi lên trong khoảng (−∞;1) nên hàm số đồng biến trong khoảng (−∞;1). Trong khoảng (1;+∞)  thì hàm số nghịch biến.

Bảng biến thiên:

Giải Toán 10 trang 42 Tập 1

Luyện tập vận dụng 3 trang 42 Toán lớp 10: Lập bảng biến thiên của mỗi hàm số sau:

a) y=x2−3x+4

b) y=−2x2+5

Phương pháp giải:

– Xác định hệ số a, b.

– Tính −b2a.

– Tìm khoảng đồng biến, nghịch biến.

Lời giải:

a) Hệ số a=1>0,b=−3⇒−b2a=32

Vậy hàm số nghịch biến trên khoảng (−∞;32) và đồng biến trên (32;+∞)

b) Ta có a=−2<0,b=0

⇒−b2a=0

Vậy hàm số đã cho đồng biến trên khoảng (−∞;0) và nghịch biến trên khoảng (0;+∞)

III. Ứng dụng

Giải Toán 10 trang 43 Tập 1

Luyện tập vận dụng 4 trang 43 Toán lớp 10: Trong bài toán ở phần mở đầu, độ cao y (m) của một điểm thuộc vòng cung thành cầu cảng Sydney đạt giá trị lớn nhất là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?

 

Phương pháp giải:

Độ cao y là tung độ của đỉnh parabol.

Lời giải:

Hàm số biểu diễn đồ thị y=−0,00188(x−251,5)2+118

(x−251,5)2≥0⇔−0,00188(x−251,5)2≤0⇔−0,00188(x−251,5)2+118≤118

Khi đó độ cao y (m) của một điểm thuộc vòng cung thành cầu cảng Sydney đạt giá trị lớn nhất là y=118(m)

Bài tập

Bài 1 trang 43 Toán lớp 10: Trong các hàm số sau, hàm số nào là hàm số bậc hai? Với những hàm số bậc hai đó, xác định a,b,c lần lượt là hệ số của x2, hệ số của x và hệ số tự do.

a) y=−3x2

b) y=2x(x2−6x+1)

c) y=4x(2x−5)

Phương pháp giải:

– Xác định hàm số bậc hai (số mũ cao nhất là 2)

– Tìm hệ số a, b, c.

Lời giải:

a) Hàm số y=−3x2 là hàm số bậc hai.

y=−3.x2+0.x+0

Hệ số a=−3,b=0,c=0.

b) Hàm số y=2x(x2−6x+1)⇔y=2x3−12x2+2x có số mũ cao nhất là 3 nên không là hàm số bậc hai.

c) Hàm số y=4x(2x−5)⇔y=8x2−20x có số mũ cao nhất là 2 nên là hàm số bậc hai.

Hệ số a=8,b=−20,c=0

Bài 2 trang 43 Toán lớp 10: Xác định parabol y=ax2+bx+4 trong mỗi trường hợp sau:

a) Đi qua điểm M(1;12) và N(−3;4)

b) Có đỉnh là I(−3;−5)

Lời giải:

a) Thay tọa độ điểm M(1;12) và N(−3;4) ta được:

{a.12+b.1+4=12a.(−3)2+b.(−3)+4=4⇔{a+b=89a−3b=0⇔{a=2b=6

Vậy parabol là y=2x2+6x+4

b) Hoành độ đỉnh của parabol là −b2a

Nên ta có: −b2a=−3⇔b=6a     (1)

Thay tọa độ điểm I vào ta được:

−5=a.(−3)2+b.(−3)+4⇔9a−3b=−9⇔3a−b=−3(2)

Từ (1) và (2) ta được hệ

{b=6a3a−b=−3⇔{b=6a3a−6a=−3⇔{b=6aa=1⇔{b=6a=1

Vậy parabol là y=x2+6x+4.

Bài 3 trang 43 Toán lớp 10: Vẽ đồ thị của mỗi hàm số sau:

a) y=2x2−6x+4

b) y=−3x2−6x−3

Phương pháp giải:

Bước 1: Xác định tọa độ đỉnh (−b2a;−Δ4a)

Bước 2: Vẽ trục đối xứng x=−b2a

Bước 3: Xác định một số điểm đặc biệt, chẳng hạn giao điểm với trục tung (0;c) và trục hoành (nếu có), điểm đối xứng với điểm (0;c) qua trục x=−b2a.

Bước 4: Vẽ đường parabol đi qua các điểm đã xác định ta nhận được đồ thị hàm số y=ax2+bx+c.

Lời giải:

a) Đồ thị hàm số có đỉnh I(32;−12)

Trục đối xứng là x=32

Giao điểm của parabol với trục tung là (0;4)

Giao điểm của parabol với trục hoành là (2;0) và (1;0)

Điểm đối xứng với điểm (0;4) qua trục đối xứng x=32 là (3;4)

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:

 Bài 3 trang 43 Toán lớp 10 Tập 1 I Cánh diều (ảnh 1)

b) Đồ thị hàm số có đỉnh I(−1;0)

Trục đối xứng là x=−1

Giao điểm của parabol với trục tung là (0;-3)

Giao điểm của parabol với trục hoành là I(−1;0)

Điểm đối xứng với điểm (0;-3) qua trục đối xứng x=−1 là (-2;-3)

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:

 Bài 3 trang 43 Toán lớp 10 Tập 1 I Cánh diều (ảnh 2)

Bài 4 trang 43 Toán lớp 10: Cho đồ thị hàm số bậc hai ở Hình 15.

 

a) Xác định trục đối xứng, tọa độ đỉnh của đồ thị hàm số.

b) Xác định khoảng đồng biến, khoảng nghịch biến của hàm số.

c) Tìm công thức xác định hàm số.

Phương pháp giải:

a) Tìm trục đối xứng trên đồ thị, đỉnh I trên đồ thị.

b) Đồ thị đi lên thì hàm số đồng biến, đi xuống thì hàm số nghịch biến.

c) Gọi hàm số là y=ax2+bx+c(a≠0)

Đồ thị hàm số có đỉnh là I(−b2a;−Δ4a), xác định thêm 1 điểm thuộc đồ thị và thay vào phương trình tìm a, b, c.

Lời giải:

a) Trục đối xứng là đường thẳng x=2

Đỉnh là I(2;−1)

b) Từ đồ thị ta thấy trên khoảng (−∞;2) thì hàm số đi xuống nên hàm số nghịch biến trên (−∞;2).

Trên khoảng (2;+∞) thì hàm số đi xuống nên đồng biến trên (2;+∞).

c) ) Gọi hàm số là y=ax2+bx+c(a≠0)

Đồ thị hàm số có đỉnh là I(2;−1) nên ta có:

{−b2a=2a.22+b.2+c=−1⇔{b=−4a4a+2b+c=−1

Ta lại có điểm (1;0) thuộc đồ thị nên ta có: a+b+c=0

Vậy ta có hệ sau:

{b=−4a4a+2b+c=−1a+b+c=0⇔{b=−4a4a+2.(−4a)+c=−1a+(−4a)+c=0⇔{b=−4ac−4a=−1c−3a=0⇔{b=−4aa=1c=3⇔{b=−4a=1c=3

Vậy parabol là y=x2−4x+3

Bài 5 trang 43 Toán lớp 10: Nêu khoảng đồng biến, khoảng nghịch biến của mỗi hàm số sau:

a) y=5x2+4x−1

b) y=−2x2+8x+6

Phương pháp giải:

– Xác định hệ số a, b.

– Tính −b2a.

– Tìm khoảng đồng biến, nghịch biến.

Lời giải:

a) Hệ số a=5>0,b=4⇒−b2a=−42.5=−25

Vậy hàm số nghịch biến trên khoảng (−∞;−25) và đồng biến trên (−25;+∞)

b) Ta có a=−2<0,b=8

⇒−b2a=−82.(−2)=2

Vậy hàm số đã cho đồng biến trên khoảng (−∞;2) và nghịch biến trên khoảng (2;+∞)

Bài 6 trang 43 Toán lớp 10: Khi du lịch đến thành phố St. Louis (Mỹ), ta sẽ thấy một cái cổng lớn có hình parabol hướng bề lõm xuống dưới, đó là cổng Arch. Giả sử ta lập một hệ toạ độ Oxy sao cho một chân cổng đi qua gốc O như Hình 16 (x và y tính bằng mét), chân kia của cổng ở vị trí có toạ độ (162;0). Biết một điểm M trên cổng có toạ độ là (10;43). Tính chiều cao của cổng (tính từ điểm cao nhất trên cổng xuống mặt đất), làm tròn kết quả đến hàng đơn vị.

Bài 6 trang 43 Toán lớp 10 Tập 1 I Cánh diều (ảnh 1)

Phương pháp giải:

– Xác định các điểm thuộc đồ thị.

– Gọi hàm số là y=ax2+bx+c(a≠0)

– Thay tọa độ các điểm vào và tìm a, b, c.

– Tìm đỉnh của parabol, từ đó suy ra chiều cao của cổng.

Lời giải:

Từ đồ thị ta thấy các điểm thuộc đồ thị là: A(0;0),B(10;43),B(162;0).

Gọi hàm số là y=ax2+bx+c(a≠0)

Thay tọa độ các điểm A, B, C vào ta được hệ:

{a.02+b.0+c=0a.102+b.10+c=43a.1622+b.162+c=0⇔{c=0100a+10b=431622a+162b=0⇔{c=0a=−431520b=3483760

Từ đố ta có y=−431520x2+3483760x

Hoành độ đỉnh của đồ thị là: x=−b2a=81

Khi đó: y=−431520.812+3483760.81≈186(m)

Vậy chiều cao của cổng là 186m.

Bài giảng Toán 10 Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai – Cánh diều

Xem thêm các bài giải SGK Toán 10 Cánh diều hay, chi tiết khác:

Bài 1: Hàm số và đồ thị

Bài 3: Dấu của tam thức bậc hai

Bài 4: Bất phương trình bậc hai một ẩn

Bài 5: Hai dạng phương trình quy về phương trình bậc hai

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Lý thuyết Toán 8 Chương 2 (Chân trời sáng tạo 2023): Các hình khối trong thực tiễn hay, chi tiết

Next post

20 câu Trắc nghiệm Số thập phân (Cánh diều) có đáp án 2023 – Toán 6

Bài liên quan:

20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10

Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10

Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới

Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10

Trắc nghiệm Toán 10 Kết nối tri thức có đáp án

Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)

Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10

Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  2. Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  3. Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới
  4. Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10
  5. Trắc nghiệm Toán 10 Kết nối tri thức có đáp án
  6. Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)
  7. Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10
  8. Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề
  9. Giáo án Toán 10 Kết nối tri thức (cả năm) mới nhất 2023
  10. Chuyên đề Toán 10 Kết nối tri thức | Giải bài tập Chuyên đề học tập Toán 10 hay, chi tiết
  11. Sách bài tập Toán 10 Kết nối tri thức | Giải SBT Toán 10 | Giải sách bài tập Toán 10 Tập 1, Tập 2 hay nhất | SBT Toán 10 Kết nối tri thức | SBT Toán 10 KNTT
  12. Tổng hợp Lý thuyết Toán lớp 10 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 10 | Tổng hợp kiến thức Toán 10 chương trình mới
  13. Giải sgk Toán 10 Kết nối tri thức | Giải Toán 10 | Giải Toán lớp 10 | Giải bài tập Toán 10 hay nhất | Giải Toán 10 Tập 1, Tập 2 Kết nối tri thức
  14. Sách bài tập Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  15. Giải SGK Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  16. 20 câu Trắc nghiệm Tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  17. Lý thuyết Tập hợp và các phép toán trên tập hợp (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  18. Bài giảng điện tử Tập hợp và các phép toán trên tập hợp | Kết nối tri thức Giáo án PPT Toán 10
  19. Giáo án Toán 10 Bài 2 (Kết nối tri thức 2023): Tập hợp và các phép toán trên tập hợp
  20. Sách bài tập Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  21. Giải SGK Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  22. 30 câu Trắc nghiệm Chương 1: Mệnh đề và tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  23. Lý thuyết Toán 10 Chương 1 (Kết nối tri thức 2023): Mệnh đề và Tập hợp hay, chi tiết
  24. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 1
  25. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  26. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  27. 20 câu Trắc nghiệm Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  28. Lý thuyết Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  29. Bài giảng điện tử Bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  30. Giáo án Toán 10 Bài 3 (Kết nối tri thức 2023): Bất phương trình bậc nhất hai ẩn
  31. Sách bài tập Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  32. Giải SGK Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  33. Lý thuyết Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  34. Bài giảng điện tử Hệ bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  35. Giáo án Toán 10 Bài 4 (Kết nối tri thức 2023): Hệ bất phương trình bậc nhất hai ẩn
  36. 20 câu Trắc nghiệm Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  37. Sách bài tập Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  38. Giải SGK Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  39. Lý thuyết Toán 10 Chương 2 (Kết nối tri thức 2023): Bất phương trình và hệ phương trình bậc nhất hai ẩn hay, chi tiết
  40. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 2
  41. 30 câu Trắc nghiệm Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  42. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  43. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  44. Lý thuyết Giá trị lượng giác của một góc từ 0 đến 180 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  45. Bài giảng điện tử Giá trị lượng giác của một góc từ 0 độ đến 180 độ | Kết nối tri thức Giáo án PPT Toán 10
  46. Giáo án Toán 10 Bài 5 (Kết nối tri thức 2023): Giá trị lượng giác của một góc từ 0 độ đến 180 độ
  47. 20 câu Trắc nghiệm Giá trị lượng giác của 1 góc từ 0° đến 180° (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  48. Sách bài tập Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0° đến 180°
  49. Giải SGK Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0 đến 180
  50. Lý thuyết Hệ thức lượng trong tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  51. Bài giảng điện tử Hệ thức lượng trong tam giác | Kết nối tri thức Giáo án PPT Toán 10
  52. Giáo án Toán 10 Bài 6 (Kết nối tri thức 2023): Hệ thức lượng trong tam giác

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán