Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 10

Giải SGK Toán (Cánh diều): Bài tập cuối chương 4

By admin 16/10/2023 0

Giải bài tập Toán lớp 10 Bài tập cuối chương 4

Giải Toán 10 trang 99 Tập 1

Bài 1 trang 99 Toán lớp 10: Cho tam giác ABC có AB = 3, AC = 4, BAC^=120°. Tính (làm tròn kết quả đến hàng đơn vị):

a) Độ dài cạnh BC và độ lớn góc B;

b) Bán kính đường tròn ngoại tiếp;

c) Diện tích của tam giác;

d) Độ dài đường cao xuất phát từ A;

e) AB→ . AC→, AM→ .BC→ với M là trung điểm của BC.

Lời giải:

 

: Cho tam giác ABC có AB = 3, AC = 4, góc BAC = 120 độ .  Tính (làm tròn kết quả đến hàng đơn vị)

a) + Áp dụng định lí côsin trong tam giác ABC ta có:

BC2 = AB2 + AC­2 – 2 . AB . AC . cosBAC^

        = 32 + 42 – 2 . 3. 4 . cos 120°

        = 9 + 16 – (– 12)

        = 37

Suy ra: BC=37≈6.

+ Ta có: cosB=AB2+BC2−AC22.AB.BC=32+62−422.3.6=2936

Suy ra B^≈36°.

b) Áp dụng định lí sin trong tam giác ABC ta có: BCsinA=2R

Suy ra: R=BC2sinA=62.sin120°=23≈3.

Vậy bán kính đường tròn ngoại tiếp tam giác ABC là R ≈ 3.

c) Diện tích tam giác ABC là:

S=12AB.AC.sinA=12.3.4.sin120°=33≈5.

d) Kẻ đường cao AH.

Ta có diện tích tam giác ABC là: S=12AH.BC

Suy ra: AH=2SBC=2.56≈2.

e)

+ Ta có:

AB→ . AC→= AB→ . AC→.cosAB→, AC→

=AB. AC. cosBAC^

= 3 . 4 . cos 120° = – 6.

Do đó: AB→  .AC→ =−6.

+ Do M là trung điểm của BC nên ta có: AB→+AC→=2AM→.

Suy ra: AM→=12AB→+AC→.

Khi đó: AM→ . BC→=12AB→+AC→.BC→

=12AB→+AC→.BA→+AC→

=12AB→+AC→.−AB→+AC→

=12AC→+AB→.AC→−AB→

=12AC→2−AB→2

=12AC−AB=124−3=12

Vậy AM→.BC→=12

Bài 2 trang 99 Toán lớp 10: Không dùng máy tính cầm tay, hãy tính giá trị của các biểu thức sau:

A = (sin 20° + sin 70°)2 + (cos 20° + cos 110°)2, 

B = tan 20° + cot 20° + tan 110° + cot 110°.

Lời giải:

+ Ta có: 

A = (sin 20° + sin 70°)2 + (cos 20° + cos 110°)2

= [sin(90° – 70°) + sin 70°]2 + [cos(90° – 70°) + cos(180° – 70°)]2

= (cos70° + sin 70°)2 + [sin 70° + (– cos 70°)]2

= (cos 70° + sin 70°)2 + (sin 70° – cos 70°)2

= cos2 70° + 2 . cos 70° . sin 70° + sin2 70° + sin2 70° – 2 . sin 70° . cos 70° + cos2 70°

= 2(cos2 70° + sin2 70°) 

= 2 . 1 = 2

Vậy A = 2. 

+ Ta có: 

B = tan 20° + cot 20° + tan 110° + cot 110°

= tan (90° – 70°) + cot(90° – 70°) + tan (180° – 70°) + cot (180° – 70°)

= cot 70° + tan 70° + (– tan 70°) + (– cot 70°)

= (cot 70° – cot 70°) + (tan 70° – tan 70°)

= 0 + 0 = 0 

Vậy B = 0. 

Bài 3 trang 99 Toán lớp 10: Không dùng thước đo góc, làm thế nào để biết số đo góc đó.

Bạn Hoài vẽ góc xOy và đố bạn Đông làm thế nào để có thể biết được số đo góc của góc này khi không có thước đo góc. Bạn Đông làm như sau: (Hình 70)

– Chọn các điểm A, B lần lượt thuộc các tia Ox và Oy sao cho OA = OB = 2 cm; 

– Đo độ dài đoạn thẳng AB được AB = 3,1 cm. 

Từ các dữ kiện trên bạn Đông tính được cosxOy^, từ đó suy ra độ lớn góc xOy. 

Em hãy cho biết số đo góc xOy ở Hình 69 bằng bao nhiêu độ (làm tròn kết quả đến hàng đơn vị).

Không dùng thước đo góc, làm thế nào để biết số đo góc đó

Lời giải:

* Tính góc xOy bạn Hoài vẽ:  

Không dùng thước đo góc, làm thế nào để biết số đo góc đó

Áp dụng hệ quả của định lí côsin trong tam giác ABO ta có: 

cosO=OA2+OB2−AB22.OA.OB=22+22−3,122.2.2=−161800

Do đó: O^≈102°. 

Vậy từ các dự kiện bạn Đông tính được, ta suy ra xOy^≈102°. 

Bài 4 trang 99 Toán lớp 10: Có hai trạm quan sát A và B ven hồ và một trạm quan sát C ở giữa hồ. Để tính khoảng cách từ A và từ B đến C, người ta làm như sau (Hình 71):

– Đo góc BAC được 60°, đo góc ABC được 45°; 

– Đo khoảng cách AB được 1 200 m. 

Khoảng cách từ trạm C đến các trạm A và B bằng bao nhiêu mét (làm tròn kết quả đến hàng đơn vị)? 

Có hai trạm quan sát A và B ven hồ và một trạm quan sát C ở giữa hồ. Để tính khoảng cách

Lời giải:

Ba vị trí A, B, C tạo thành 3 đỉnh của tam giác ABC. 

Ta có: A^+B^+C^=180° (định lí tổng ba góc trong tam giác ABC) 

Suy ra: C^=180°−A^+B^=180°−60°+45°=75°. 

Áp dụng định lí sin trong tam giác ABC ta có: ABsinC=BCsinA=ACsinB

Do đó: AC=AB.sinBsinC=1200.sin45°sin75°≈878 (m); 

BC=AB.sinAsinC=1200.sin60°sin75°≈1076 (m). 

Vậy khoảng cách từ trạm C đến trạm A khoảng 878 m và từ trạm C đến trạm B khoảng 1 076 m. 

Bài 5 trang 99, 100 Toán lớp 10: Một người đứng ở bờ sông, muốn đo độ rộng của khúc sông chảy qua vị trí đang đứng (khúc sông tương đối thẳng, có thể xem hai bờ song song với nhau).

Một người đứng ở bờ sông, muốn đo độ rộng của khúc sông chảy qua vị trí đang đứng

Từ vị trí đang đứng A, người đó đo được góc nghiêng α = 35° so với bờ sông tới một vị trí C quan sát được ở phía bờ bên kia. Sau đó di chuyển dọc bờ sông đến vị trí B cách A một khoảng d = 50 m và tiếp tục đo được góc nghiêng β = 65° so với bờ bên kia tới vị trí C đã chọn (Hình 72). Hỏi độ rộng của khúc sông chảy qua vị trí người đó đang đứng là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?

Lời giải:

Một người đứng ở bờ sông, muốn đo độ rộng của khúc sông chảy qua vị trí đang đứng

Dựng AD vuông góc với hai bên bờ sông, khi đó AD là độ rộng của khúc sông chạy qua vị trí của người đó đang đứng. Ta cần tính khoảng cách AD. 

Xét tam giác ABC ta có: CAB^+ACB^=65° (tính chất góc ngoài tại đỉnh B của tam giác)

Suy ra ACB^=65°−CAB^=65°−35°=30°. 

Lại có ABC^=180°−65°=115°. 

Áp dụng định lí sin trong tam giác ABC ta có: ABsinACB^=ACsinABC^.

Suy ra AC=AB.sinABC^sinACB^=50.sin115°sin30°≈90,6. 

Ta có: DAC^=90°−35°=55°. 

Tam giác ADC vuông tại D nên cosDAC^=ADAC.

⇒AD=AC.cosDAC^=90,6.cos55°≈52,0 (m).

Vậy độ rộng của khúc sông chảy qua vị trí người đó đang đứng là 52,0 m. 

Giải Toán 10 trang 100 Tập 1

Bài 6 trang 100 Toán lớp 10: Để đo khoảng cách giữa hai vị trí M, N ở hai phía ốc đảo, người ta chọn vị trí O bên ngoài ốc đảo sao cho: O không thuộc đường thẳng MN; các khoảng cách OM, ON và góc MON là đo được (Hình 74). Sau khi đo, ta có OM = 200 m, ON = 500 m, MON^=135° .

Khoảng cách giữa hai vị trí M, N là bao nhiêu mét (làm tròn kết quả đến hàng đơn vị)? 

Để đo khoảng cách giữa hai vị trí M, N ở hai phía ốc đảo, người ta chọn vị trí O

Lời giải:

Ba vị trí O, M, N tạo thành ba đỉnh của tam giác. 

Tam giác OMN có OM = 200 m, ON = 500 m và MON^=135°. 

Áp dụng định lí côsin trong tam giác OMN ta có: 

MN2 = OM2 + ON2 – 2 . OM . ON . cosMON^

        = 2002 + 5002 – 2 . 200 . 500 . cos135°

≈ 431421 

Suy ra: MN ≈ 657 m.

Vậy khoảng cách giữa hai ví trí M, N khoảng 657 m.

Bài 7 trang 100 Toán lớp 10: Chứng minh:

a) Nếu ABCD là hình bình hành thì AB→+AD→+CE→=AE→ với E là điểm bất kì; 

b) Nếu I là trung điểm của đoạn thẳng AB thì MA→+MB→+2IN→=2MN→ với M, N là hai điểm bất kì; 

c) Nếu G là trọng tâm của tam giác ABC thì MA→+MB→+MC→−3MN→=3NG→ với M, N là hai điểm bất kì. 

Lời giải:

a) 

Chứng minh: Nếu ABCD là hình bình hành thì vectơ AB + vectơ AD +vectơ CE = vectơ AE

Vì ABCD là hình bình hành nên AC→=AB→+AD→. 

Với E là điểm bất kì ta có: 

AB→+AD→+CE→=AC→+CE→=AE→. 

Vậy AB→+AD→+CE→=AE→ với E là điểm bất kì. 

b) 

Chứng minh: Nếu ABCD là hình bình hành thì vectơ AB + vectơ AD +vectơ CE = vectơ AE

Vì I là trung điểm của AB nên với điểm M bất kì ta có: MA→+MB→=2MI→. 

Do đó, với điểm N bất kì, ta có: 

MA→+MB→+2IN→=2MI→+2IN→=2MI→+IN→=2MN→

Vậy MA→+MB→+2IN→=2MN→ với M, N là hai điểm bất kì. 

c) 

Chứng minh: Nếu ABCD là hình bình hành thì vectơ AB + vectơ AD +vectơ CE = vectơ AE

Do G là trọng tâm của tam giác ABC nên với điểm M bất kì ta có: 

MA→+MB→+MC→=3MG→. 

Khi đó với điểm N bất kì ta có: 

MA→+MB→+MC→−3MN→=3MG→−3MN→=3MG→+−MN→=3MG→+NM→=3NM→+MG→=3NG→

Vậy MA→+MB→+MC→−3MN→=3NG→ với M, N là hai điểm bất kì. 

Bài 8 trang 100 Toán lớp 10: Cho hình bình hành ABCD có AB = 4, AD = 6, BAD^=60° (Hình 74).

Cho hình bình hành ABCD có AB = 4, AD = 6, góc BAD = 60 độ (Hình 74)

a) Biểu thị các vectơ BD→,  AC→ theo AB→,  AD→. 

b) Tính các tích vô hướng AB→ . AD→,  AB→ . AC→,  BD→ . AC→. 

c) Tính độ dài các đường chéo BD, AC. 

Lời giải:

a) Ta có: BD→=BA→+AD→=−AB→+AD→. 

Do ABCD là hình bình hành nên AC→=AB→+AD→. 

b) Ta có: AB→.AD→=AB→.AD→.cosAB→,AD→

=AB .AD.cosBAD^ = 4 . 6 . cos60° = 12. 

Do đó: AB→.AD→=12. 

Ta cũng có: AB→.AC→=AB→. AB→+AD→

=AB→2+AB→.AD→ = AB2 + 12 = 42 + 12 = 28. 

Do đó: AB→.AC→=28. 

Lại có: BD→.AC→=−AB→+AD→.AB→+AD→

=AD→−AB→.AD→+AB→

=AD→2−AB→2

= AD2 – AB2 = 62 – 42 = 20. 

Vậy BD→.AC→=20

c) Áp dụng định lí côsin trong tam giác ABD có: 

BD2 = AB2 + AD2 – 2 . AB . AD . cosA

        = 42 + 62 – 2 . 4 . 6 . cos 60° = 28

⇒BD=28=27

Ta có:

AC→=AB→+AD→⇒AC→2=AB→+AD→2

⇔AC→2=AB→2+2.AB→.AD→+AD→2

⇔AC2=AB2+2AB→.AD→+AD2

Suy ra: AC2 = 42 + 2 . 12 + 62 = 76

⇒AC=76=219

Bài 9 trang 100 Toán lớp 10: Hai lực F1→,  F2→ cho trước cùng tác dụng lên một vật tại điểm O và tạo với nhau một góc F1→,  F2→=α làm cho vật di chuyển theo hướng từ O đến C (Hình 75). Lập công thức tính cường độ của hợp lực F→ làm cho vật di chuyển theo hướng từ O đến C (giả sử chỉ có đúng hai lực F1→,  F2→ làm cho vật di chuyển).

Hai lực vectơ F1, vectơ F2 cho trước cùng tác dụng lên một vật tại điểm O và tạo với nhau một góc

Lời giải:

Ta thấy, AOBC là hình bình hành. 

Do đó: OC→=OA→+OB→

Suy ra: F→=F1→+F2→ (1).

Ta cần tính cường độ của hợp lực F→ hay chính là tính F→. 

Từ (1) suy ra F→2=F1→+F2→2.

⇔F→2=F1→2+2.F1→.F2→+F2→2

⇔F→2=F1→2+2.F1→.F2→+F2→2 (2)

Ta lại có: F1→.F2→=F1→.F2→.cosF1→, F2→=F1→.F2→.cosα (3).

Từ (2) và (3) suy ra: F→2=F1→2+2.F1→.F2→.cosα+F2→2

⇒F→=F1→2+2.F1→.F2→.cosα+F2→2

Vậy công thức tính cường độ của hợp lực F→ làm cho vật di chuyển theo hướng từ O đến C là F→=F1→2+2.F1→.F2→.cosα+F2→2.

Xem thêm các bài giải SGK Toán 10 Cánh diều hay, chi tiết khác:

Bài 6: Tích vô hướng của hai vectơ

Bài tập cuối chương 4

Bài 1: Quy tắc cộng. Quy tắc nhân. Sơ đồ hình cây

Bài 2: Hoán vị. Chỉnh hợp

Bài 3: Tổ hợp

 

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Lý thuyết Đại lượng tỉ lệ nghịch (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

Next post

Bộ đề thi giữa kì 2 môn toán lớp 6 các trường Hà Nội

Bài liên quan:

20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10

Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10

Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới

Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10

Trắc nghiệm Toán 10 Kết nối tri thức có đáp án

Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)

Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10

Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  2. Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  3. Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới
  4. Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10
  5. Trắc nghiệm Toán 10 Kết nối tri thức có đáp án
  6. Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)
  7. Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10
  8. Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề
  9. Giáo án Toán 10 Kết nối tri thức (cả năm) mới nhất 2023
  10. Chuyên đề Toán 10 Kết nối tri thức | Giải bài tập Chuyên đề học tập Toán 10 hay, chi tiết
  11. Sách bài tập Toán 10 Kết nối tri thức | Giải SBT Toán 10 | Giải sách bài tập Toán 10 Tập 1, Tập 2 hay nhất | SBT Toán 10 Kết nối tri thức | SBT Toán 10 KNTT
  12. Tổng hợp Lý thuyết Toán lớp 10 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 10 | Tổng hợp kiến thức Toán 10 chương trình mới
  13. Giải sgk Toán 10 Kết nối tri thức | Giải Toán 10 | Giải Toán lớp 10 | Giải bài tập Toán 10 hay nhất | Giải Toán 10 Tập 1, Tập 2 Kết nối tri thức
  14. Sách bài tập Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  15. Giải SGK Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  16. 20 câu Trắc nghiệm Tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  17. Lý thuyết Tập hợp và các phép toán trên tập hợp (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  18. Bài giảng điện tử Tập hợp và các phép toán trên tập hợp | Kết nối tri thức Giáo án PPT Toán 10
  19. Giáo án Toán 10 Bài 2 (Kết nối tri thức 2023): Tập hợp và các phép toán trên tập hợp
  20. Sách bài tập Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  21. Giải SGK Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  22. 30 câu Trắc nghiệm Chương 1: Mệnh đề và tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  23. Lý thuyết Toán 10 Chương 1 (Kết nối tri thức 2023): Mệnh đề và Tập hợp hay, chi tiết
  24. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 1
  25. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  26. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  27. 20 câu Trắc nghiệm Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  28. Lý thuyết Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  29. Bài giảng điện tử Bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  30. Giáo án Toán 10 Bài 3 (Kết nối tri thức 2023): Bất phương trình bậc nhất hai ẩn
  31. Sách bài tập Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  32. Giải SGK Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  33. Lý thuyết Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  34. Bài giảng điện tử Hệ bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  35. Giáo án Toán 10 Bài 4 (Kết nối tri thức 2023): Hệ bất phương trình bậc nhất hai ẩn
  36. 20 câu Trắc nghiệm Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  37. Sách bài tập Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  38. Giải SGK Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  39. Lý thuyết Toán 10 Chương 2 (Kết nối tri thức 2023): Bất phương trình và hệ phương trình bậc nhất hai ẩn hay, chi tiết
  40. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 2
  41. 30 câu Trắc nghiệm Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  42. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  43. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  44. Lý thuyết Giá trị lượng giác của một góc từ 0 đến 180 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  45. Bài giảng điện tử Giá trị lượng giác của một góc từ 0 độ đến 180 độ | Kết nối tri thức Giáo án PPT Toán 10
  46. Giáo án Toán 10 Bài 5 (Kết nối tri thức 2023): Giá trị lượng giác của một góc từ 0 độ đến 180 độ
  47. 20 câu Trắc nghiệm Giá trị lượng giác của 1 góc từ 0° đến 180° (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  48. Sách bài tập Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0° đến 180°
  49. Giải SGK Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0 đến 180
  50. Lý thuyết Hệ thức lượng trong tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  51. Bài giảng điện tử Hệ thức lượng trong tam giác | Kết nối tri thức Giáo án PPT Toán 10
  52. Giáo án Toán 10 Bài 6 (Kết nối tri thức 2023): Hệ thức lượng trong tam giác

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán