Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Lý thuyết Toán 11 - Kết nối tri thức

Lý thuyết Hai mặt phẳng vuông góc (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11

By admin 19/11/2024 0

Lý thuyết Toán lớp 11 Bài 25: Hai mặt phẳng vuông góc

A. Lý thuyết Hai mặt phẳng vuông góc

1. Góc giữa hai mặt phẳng, hai mặt phẳng vuông góc

– Cho hai mặt phẳng (P) và (Q). Lấy các đường thẳng a, b tương ứng vuông góc với (P), (Q). Khi đó, góc giữa a và b không phụ thuộc vào vị trí của a, b và được gọi là góc giữa hai mặt phẳng (P) và (Q).

– Hai mặt phẳng (P) và (Q) được gọi là vuông góc với nhau nếu góc giữa chúng bằng 900.

Chú ý: Nếu φ là góc giữa hai mặt phẳng (P) và (Q) thì 00≤φ≤900.

Nhận xét:

Lý thuyết Hai mặt phẳng vuông góc (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11 (ảnh 1)

Cho hai mặt phẳng (P) và (Q) cắt nhau theo giao tuyến Δ. Lấy hai đường thẳng m, n tương ứng thuộc (P), (Q) và cùng vuông góc với Δ tại một điểm O (nói cách khác, lấy một mặt phẳng vuông góc với Δ, cắt (P), (Q) tương ứng theo các giao tuyến m, n). Khi đó, góc giữa (P) và (Q) bằng góc giữa m và n. Đặc biệt, (P) vuông góc với (Q) khi và chỉ khi m vuông góc với n.

2. Điều kiện để hai mặt phẳng vuông góc

Hai mặt phẳng vuông góc với nhau nếu mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.

3. Tính chất của hai mặt phẳng vuông góc

– Với hai mặt phẳng vuông góc với nhau, bất kì đường thẳng nào nằm trong mặt phẳng này mà vuông góc với giao tuyến cũng vuông góc với mặt phẳng kia.

Nhận xét: Cho hai mặt phẳng (P) và (Q) vuông góc với nhau. Mỗi đường thẳng qua điểm O thuộc (P) và vuông góc với mặt phẳng (Q) thì đường thẳng đó thuộc mặt phẳng (P).

– Nếu hai mặt phẳng cắt nhau và cùng vuông góc với một mặt phẳng thứ ba thì giao tuyến của chúng vuông góc với mặt phẳng thứ ba đó.

4. Góc nhị diện

– Hình gồm hai nửa mặt phẳng (P), (Q) có chung bờ a được gọi là một góc nhị diện, kí hiệu là [P,a,Q]. Đường thẳng a và các nửa mặt phẳng (P), (Q) tương ứng được gọi là cạnh và các mặt của góc nhị diện đó.

Lý thuyết Hai mặt phẳng vuông góc (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11 (ảnh 2)

Mỗi đường thẳng a trong một mặt phẳng chia mặt phẳng thành hai phần, mỗi phần cùng với a là một nửa mặt phẳng bờ a.

– Từ một điểm O bất kì thuộc cạnh a của góc nhị diện [P,a,Q], vẽ các tia Ox, Oy tương ứng thuộc (P), (Q) và vuông góc với a. Góc xOy được gọi là một góc phẳng của góc nhị diện [P,a,Q] (gọi tắt là góc phẳng nhị diện). Số đo của góc xOy không phụ thuộc vào vị trí của O trên a, được gọi là số đo của góc nhị diện [P,a,Q].

Lý thuyết Hai mặt phẳng vuông góc (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11 (ảnh 3)

Mặt phẳng chứa góc phẳng nhị diện xOy của [P,a,Q] vuông góc với cạnh a.

Chú ý:

– Số đo của góc nhị diện có thể nhận giá trị từ 00 đến 1800. Góc nhị diện được gọi là góc vuông, nhọn, tù nếu nó có số đo tương ứng bằng, nhỏ hơn, lớn hớn 900.

– Đối với hai điểm M, N không thuộc đường thẳng a, ta kí hiệu [M, a, N] là góc nhị diện có cạnh a và các mặt tương ứng chứa M, N.

– Hai mặt phẳng cắt nhau tạo thành bốn góc nhị diện. Nếu một trong bốn góc nhị diện đó là góc nhị diện vuông thì các góc nhị diện còn lại cũng là góc nhị diện vuông.

5. Một số hình lăng trụ đặc biệt

a) Hình lăng trụ đứng

Lý thuyết Hai mặt phẳng vuông góc (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11 (ảnh 4)

Hình lăng trụ đứng  là hình lăng trụ có các cạnh bên vuông góc với mặt đáy.

Hình lăng trụ đứng có các mặt bên là các hình chữ nhật và vuông góc với mặt đáy.

b) Hình lăng trụ đều

Lý thuyết Hai mặt phẳng vuông góc (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11 (ảnh 5)

Hình lăng trụ đều là hình lăng trụ đứng có đáy là đa giác đều.

Hình lăng trụ đều có các mẳ bên là các hình chữ nhật có cùng kích thước.

c) Hình hộp đứng

Lý thuyết Hai mặt phẳng vuông góc (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11 (ảnh 6)

Hình hộp đứng là hình lăng trụ đứng, có đáy là hình bình hành.

Hình hộp đứng có các mặt bên là các hình chữ nhật.

d) Hình hộp chữ nhật

Lý thuyết Hai mặt phẳng vuông góc (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11 (ảnh 7)

Hình hộp chữ nhật là hình hộp đứng có đáy là hình chữ nhật.

Hình hộp chữ nhật có các mặt bên là hình chữ nhật. Các đường chéo của hình hộp chữ nhật có độ dài bằng nhau và chúng cắt nhau tại trung điểm của mỗi đường.

e) Hình lập phương

Lý thuyết Hai mặt phẳng vuông góc (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11 (ảnh 8)

Hình lập phương là hình hộp chữ nhật có tất cả các cạnh bằng nhau,

Hình lập phương có các mặt là các hình vuông.

Chú ý: Khi đáy của hình lăng trụ đứng (đều) là tam giác, tứ giác, ngũ giác,… đôi khi ta cũng tương ứng gọi rõ là hình lăng trụ đứng (đều) tam giác, tứ giác, ngũ giác,…

6. Hình chóp đều và hình chóp cụt đều

Hình chóp đều là hình chóp có đáy là đa giác đều và các cạnh bên bằng nhau.

Chú ý: Tương tự như đối với hình chóp, khi đáy của hình chóp đều là tam giác đều, hình vuông, ngũ giác đều,… đôi khi ta cũng gọi rõ chúng tương ứng là chóp tam giác đều, tứ giác đều, ngũ giác đều,…

Lý thuyết Hai mặt phẳng vuông góc (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11 (ảnh 9)

Hình gồm các đa giác đềuA1A2…An.B1B2…Bn và các hình thang cân A1A2B2B1,A2A3B3B2,…,AnA1B1Bn được gọi là một hình chóp cụt đều (nói đơn giản là hình chóp cụt được tạo thành từ hình chóp đều S.A1A2…An sau khi cắt đi chóp đều S⋅B1B2…Bn), kí hiệu là A1A2…An⋅B1B2…Bn.

– Các đa giác A1A2…An,B1B2…Bn được gọi là hai mặt đáy,

– Các hình thang A1A2B2B1,A2A3B3B2,…,AnA1B1Bn được gọi là các mặt bên;

– Các đoạn thẳng A1B1,A2B2,…,AnBn được gọi là các cạnh bên;

– Các cạnh của hai mặt đáy được gọi là các cạnh đáy của hình chóp cụt.

Đoạn thẳng HK nối hai tâm của đáy được gọi là đường cao của hình chóp cụt đều. Độ dài của đường cao được gọi là chiều cao của hình chóp cụt.

Sơ đồ tư duy Hai mặt phẳng vuông góc

Lý thuyết Hai mặt phẳng vuông góc (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11 (ảnh 1)

B. Bài tập Hai mặt phẳng vuông góc

Đang cập nhật …

Xem thêm các bài tóm tắt lý thuyết Toán lớp 11 Kết nối tri thức hay, chi tiết khác:

Lý thuyết Bài 24: Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng

Lý thuyết Bài 25: Hai mặt phẳng vuông góc

Lý thuyết Bài 26: Khoảng cách

Lý thuyết Bài 27: Thể tích

Lý thuyết Bài 28: Biến cố hợp, biến cố giao, biến cố độc lập

Tags : Tags 1. Giải sgk Toán 11 Chân trời sáng tạo Giải bài tập Toán 11 Tập 1   chi tiết)   Tập 2 Chân trời sáng tạo (hay
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Lý thuyết Phương trình mũ, bất phương trình mũ và lôgarit (Cánh diều 2024) hay, chi tiết | Toán lớp 11

Next post

Lý thuyết Toán 11 Chương 8 (Chân trời sáng tạo 2024): Quan hệ vuông góc trong không gian. Phép chiếu song song hay, chi tiết

Bài liên quan:

Lý thuyết Toán 11 Chương 1 (Kết nối tri thức 2023): Hàm số lượng giác và phương trình lượng giác hay, chi tiết

Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11

Lý thuyết Công thức lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11

Lý thuyết Hàm số lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11

Lý thuyết Phương trình lượng giác cơ bản (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11

Lý thuyết Toán 11 Chương 2 (Kết nối tri thức 2023): Dãy số. Cấp số cộng và cấp số nhân hay, chi tiết

Lý thuyết Dãy số (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11

Lý thuyết Cấp số cộng (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11

Leave a Comment Hủy

Mục lục

  1. Lý thuyết Toán 11 Chương 1 (Kết nối tri thức 2023): Hàm số lượng giác và phương trình lượng giác hay, chi tiết
  2. Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  3. Lý thuyết Công thức lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  4. Lý thuyết Hàm số lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  5. Lý thuyết Phương trình lượng giác cơ bản (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  6. Lý thuyết Toán 11 Chương 2 (Kết nối tri thức 2023): Dãy số. Cấp số cộng và cấp số nhân hay, chi tiết
  7. Lý thuyết Dãy số (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  8. Lý thuyết Cấp số cộng (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  9. Lý thuyết Cấp số nhân (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  10. Lý thuyết Toán 11 Chương 3 (Kết nối tri thức 2023): Các số đặc trưng đo xu thế trung tâm của mẫu số liệu ghép nhóm hay, chi tiết
  11. Lý thuyết Mẫu số liệu ghép nhóm (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  12. Lý thuyết Các số đặc trưng đo xu thế trung tâm (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  13. Lý thuyết Toán 11 Chương 4 (Kết nối tri thức 2023): Quan hệ song song trong không gian hay, chi tiết
  14. Lý thuyết Đường thẳng và mặt phẳng trong không gian (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  15. Lý thuyết Hai đường thẳng song song (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  16. Lý thuyết Đường thẳng và mặt phẳng song song (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  17. Lý thuyết Hai mặt phẳng song song (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  18. Lý thuyết Phép chiếu song song (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  19. Lý thuyết Toán 11 Chương 5 (Kết nối tri thức 2023): Giới hạn. Hàm số liên tục hay, chi tiết
  20. Lý thuyết Giới hạn của dãy số (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  21. Lý thuyết Giới hạn của hàm số (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  22. Lý thuyết Hàm số liên tục (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  23. Lý thuyết Toán 11 Chương 6 (Kết nối tri thức 2024): Hàm số mũ và hàm số lôgarit hay, chi tiết
  24. Lý thuyết Lũy thừa với số mũ thực (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11
  25. Lý thuyết Lôgarit (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11
  26. Lý thuyết Hàm số mũ và hàm số lôgarit (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11
  27. Lý thuyết Phương trình, bất phương trình mũ và lôgarit (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11
  28. Lý thuyết Toán 11 Chương 7 (Kết nối tri thức 2024): Quan hệ vuông góc trong không gian hay, chi tiết
  29. Lý thuyết Hai đường thẳng vuông góc (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11
  30. Lý thuyết Đường thẳng vuông góc với mặt phẳng (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11
  31. Lý thuyết Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11
  32. Lý thuyết Khoảng cách (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11
  33. Lý thuyết Thể tích (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11
  34. Lý thuyết Toán 11 Chương 8 (Kết nối tri thức 2024): Các quy tắc tính xác suất hay, chi tiết
  35. Lý thuyết Biến cố hợp, biến cố giao, biến cố độc lập (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11
  36. Lý thuyết Công thức cộng xác suất (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11
  37. Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11
  38. Lý thuyết Toán 11 Chương 9 (Kết nối tri thức 2024): Đạo hàm hay, chi tiết
  39. Lý thuyết Định nghĩa và ý nghĩa của đạo hàm (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11
  40. Lý thuyết Các quy tắc tính đạo hàm (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11
  41. Lý thuyết Đạo hàm cấp hai (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán