Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Lý thuyết Toán 11 - Kết nối tri thức

Lý thuyết Phương trình, bất phương trình mũ và lôgarit (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11

By admin 19/11/2024 0

Lý thuyết Toán lớp 11 Bài 21: Phương trình, bất phương trình mũ và lôgarit

A. Lý thuyết Phương trình, bất phương trình mũ và lôgarit

1. Phương trình mũ

Phương trình mũ cơ bản có dạng ax=b(với 0<a≠1).

– Nếu b > 0 thì phương trình có nghiệm duy nhất x=logab.

– Nếu b ≤ 0 thì phương trình vô nghiệm.

Minh họa bằng đồ thị:

Lý thuyết Phương trình, bất phương trình mũ và lôgarit (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11 (ảnh 1)

Chú ý: Phương pháp giải phương trình mũ bằng cách đưa về cùng cơ số:

Nếu 0<a≠1 thì au=av⇔u=v.

2. Phương trình lôgarit

Phương trình lôgarit cơ bản có dạng logax=b(0<a≠1).

Phương trình lôgarit cơ bản logax=b có nghiệm duy nhất x=ab.

Minh họa bằng đồ thị:

Lý thuyết Phương trình, bất phương trình mũ và lôgarit (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11 (ảnh 2)

Chú ý: Phương pháp giải phương trình lôgarit bằng cách đưa về cùng cơ số:

Nếu u,v>0 và 0<a≠1 thì logau=logav⇔u=v.

3. Bất phương trình mũ

Bất phương trình mũ cơ bản có dạng ax>b (hoặc ax≥b,ax<b,ax≤b) với a>0,a≠1.

Xét bất phương trình dạng ax>b:

– Nếu b≤0 thì tập nghiệm của bất phương trình là R.

– Nếu b > 0 thì bất phương trình tương đương với ax>alogab.

Với a > 1, nghiệm của bất phương trình là x>logab.

Với 0<a<1, nghiệm của bất phương trình là x<logab.

Chú ý:

a) Các bất phương trình mũ cơ bản còn lại được giải tương tự.

b) Nếu a > 1 thì au=av⇔u>v.

Nếu 0 < a < 1 thì au>av⇔u<v.

4. Bất phương trình lôgarit

Bất phương trình lôgarit cơ bản có dạng logax>b(hoặc logax≥b,logax<b,logax≤b) với a>0,a≠1.

Xét bất phương trình dạng logax>b:

– Nếu a > 1 thì nghiệm của bất phương trình là x>ab.

– Nếu 0 < a < 1 thì nghiệm của bất phương trình là 0<x<ab.

Chú ý:

a) Các bất phương trình lôgarit cơ bản còn lại được giải tương tự.

b) Nếu a > 1 thì logau>logav⇔u>v>0.

Nếu 0 < a < 1 thì logau>logav⇔0<u<v.

Sơ đồ tư duy Phương trình, bất phương trình mũ và lôgarit

Lý thuyết Phương trình, bất phương trình mũ và lôgarit (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11 (ảnh 3)
 

B. Bài tập Phương trình, bất phương trình mũ và lôgarit

Đang cập nhật …

Xem thêm các bài tóm tắt lý thuyết Toán lớp 11 Kết nối tri thức hay, chi tiết khác:

Lý thuyết Bài 20: Hàm số mũ và hàm số lôgarit

Lý thuyết Bài 21: Phương trình, bất phương trình mũ và lôgarit

Lý thuyết Bài 22: Hai đường thẳng vuông góc

Lý thuyết Bài 23: Đường thẳng vuông góc với mặt phẳng

Lý thuyết Bài 24: Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng

Tags : Tags 1. Giải sgk Toán 11 Chân trời sáng tạo Giải bài tập Toán 11 Tập 1   chi tiết)   Tập 2 Chân trời sáng tạo (hay
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Lý thuyết Biến cố hợp và biến cố giao. Biến cố độc lập. Các quy tắc tính xác suất (Cánh diều 2024) hay, chi tiết | Toán lớp 11

Next post

Lý thuyết Hàm số mũ. Hàm số lôgarit (Chân trời sáng tạo 2024) hay, chi tiết | Toán lớp 11

Bài liên quan:

Lý thuyết Toán 11 Chương 1 (Kết nối tri thức 2023): Hàm số lượng giác và phương trình lượng giác hay, chi tiết

Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11

Lý thuyết Công thức lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11

Lý thuyết Hàm số lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11

Lý thuyết Phương trình lượng giác cơ bản (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11

Lý thuyết Toán 11 Chương 2 (Kết nối tri thức 2023): Dãy số. Cấp số cộng và cấp số nhân hay, chi tiết

Lý thuyết Dãy số (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11

Lý thuyết Cấp số cộng (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11

Leave a Comment Hủy

Mục lục

  1. Lý thuyết Toán 11 Chương 1 (Kết nối tri thức 2023): Hàm số lượng giác và phương trình lượng giác hay, chi tiết
  2. Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  3. Lý thuyết Công thức lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  4. Lý thuyết Hàm số lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  5. Lý thuyết Phương trình lượng giác cơ bản (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  6. Lý thuyết Toán 11 Chương 2 (Kết nối tri thức 2023): Dãy số. Cấp số cộng và cấp số nhân hay, chi tiết
  7. Lý thuyết Dãy số (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  8. Lý thuyết Cấp số cộng (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  9. Lý thuyết Cấp số nhân (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  10. Lý thuyết Toán 11 Chương 3 (Kết nối tri thức 2023): Các số đặc trưng đo xu thế trung tâm của mẫu số liệu ghép nhóm hay, chi tiết
  11. Lý thuyết Mẫu số liệu ghép nhóm (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  12. Lý thuyết Các số đặc trưng đo xu thế trung tâm (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  13. Lý thuyết Toán 11 Chương 4 (Kết nối tri thức 2023): Quan hệ song song trong không gian hay, chi tiết
  14. Lý thuyết Đường thẳng và mặt phẳng trong không gian (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  15. Lý thuyết Hai đường thẳng song song (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  16. Lý thuyết Đường thẳng và mặt phẳng song song (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  17. Lý thuyết Hai mặt phẳng song song (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  18. Lý thuyết Phép chiếu song song (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  19. Lý thuyết Toán 11 Chương 5 (Kết nối tri thức 2023): Giới hạn. Hàm số liên tục hay, chi tiết
  20. Lý thuyết Giới hạn của dãy số (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  21. Lý thuyết Giới hạn của hàm số (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  22. Lý thuyết Hàm số liên tục (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  23. Lý thuyết Toán 11 Chương 6 (Kết nối tri thức 2024): Hàm số mũ và hàm số lôgarit hay, chi tiết
  24. Lý thuyết Lũy thừa với số mũ thực (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11
  25. Lý thuyết Lôgarit (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11
  26. Lý thuyết Hàm số mũ và hàm số lôgarit (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11
  27. Lý thuyết Toán 11 Chương 7 (Kết nối tri thức 2024): Quan hệ vuông góc trong không gian hay, chi tiết
  28. Lý thuyết Hai đường thẳng vuông góc (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11
  29. Lý thuyết Đường thẳng vuông góc với mặt phẳng (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11
  30. Lý thuyết Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11
  31. Lý thuyết Hai mặt phẳng vuông góc (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11
  32. Lý thuyết Khoảng cách (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11
  33. Lý thuyết Thể tích (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11
  34. Lý thuyết Toán 11 Chương 8 (Kết nối tri thức 2024): Các quy tắc tính xác suất hay, chi tiết
  35. Lý thuyết Biến cố hợp, biến cố giao, biến cố độc lập (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11
  36. Lý thuyết Công thức cộng xác suất (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11
  37. Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11
  38. Lý thuyết Toán 11 Chương 9 (Kết nối tri thức 2024): Đạo hàm hay, chi tiết
  39. Lý thuyết Định nghĩa và ý nghĩa của đạo hàm (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11
  40. Lý thuyết Các quy tắc tính đạo hàm (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11
  41. Lý thuyết Đạo hàm cấp hai (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán