Một lớp có 36 học sinh, trong đó 20 người thích bóng rổ, 14 người thích bóng bàn và 10 người không thích môn nào trong hai môn thể thao này.
a) Có bao nhiêu học sinh của lớp thích cả hai môn trên?
b) Có bao nhiêu học sinh của lớp thích bóng rổ nhưng không thích bóng bàn?
Hướng dẫn giải chi tiết Bài 4
Phương pháp giải
Kí hiệu A là tập hợp các học sinh của lớp, B = {x ∈ A | x thích bóng rổ},
C = {x ∈ A | x thích bóng bàn}, D = {x ∈ A | x không thích môn nào trong hai môn}.
Theo giả thiết, ta có: n(A) = 36, n(B) = 20, n(C) = 14 và n(D) = 10.
Lời giải chi tiết
a) Số học sinh thích một trong hai môn là:
n(B ∪ C) = n(A) – n(D) = 36 – 10 = 26 (bạn).
Số học sinh thích cả hai môn thể thao trên là:
n(B ∩ C) = n(B) + n(C) – n(B ∪ C) = 20 + 14 – 26 = 8 (bạn).
b) Số học sinh thích bóng rổ nhưng không thích bóng bàn là:
n(B \ C) = n(B) – n(B ∩ C) = 20 – 8 = 12 (bạn).
— *****
Để lại một bình luận