Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 8

50 Bài tập Phương trình chứa dấu giá trị tuyệt đối (có đáp án)- Toán 8

By admin 22/10/2023 0

Bài tập Toán 8 Chương 4 Bài 5: Phương trình chứa dấu giá trị tuyệt đối

A. Bài tập Phương trình chứa dấu giá trị tuyệt đối

I. Bài tập trắc nghiệm

Bài 1: Biểu thức A = | 4x | + 2x – 1 với x < 0, rút gọn được kết quả là?

A. A = 6x – 1

B. A = 1 – 2x

C. A = – 1 – 2x

D. A = 1 – 6x

Lời giải:

Ta có: x < 0 ⇒ | 4x | = – 4x

Khi đó ta có: A = | 4x | + 2x – 1 = – 4x + 2x – 1 = – 2x – 1

Chọn đáp án C.

Bài 2: Tập nghiệm của phương trình: | 3x + 1 | = 5

A. S = { – 2 }

B. S = { 43 }

C. S = { – 2;43 }

D. S = { Ø }

Lời giải:

Ta có: | 3x + 1 | = 5 ⇔ Bài tập Phương trình chứa dấu giá trị tuyệt đối | Lý thuyết và Bài tập Toán 8 có đáp án

Vậy tập nghiệm của phương trình đã cho là S = { – 2;43 }

Chọn đáp án C.

Bài 3: Tập nghiệm của phương trình |2 – 3x| = |5 – 2x| là?

A. S = { – 3;1 }

B. S = { – 3;75 }

C. S = { 0;75 }

D. S = { – 3;1 }

Lời giải:

Ta có: |2 – 3x| = |5 – 2x| ⇔ Bài tập Phương trình chứa dấu giá trị tuyệt đối | Lý thuyết và Bài tập Toán 8 có đáp án

Vậy tập nghiệm của phương trình là S = { – 3;75 }

Chọn đáp án B.

Bài 4: Giá trị m để phương trình | 3 + x | = m có nghiệm x = – 1 là?

A. m = 2   

B. m = – 2

C. m = 1   

D. m = – 1

Lời giải:

Phương trình đã cho có nghiệm x = – 1 nên ta có: | 3 + ( – 1 ) | = m ⇔ m = 2.

Vậy m = 2 là giá trị cần tìm.

Chọn đáp án A.

Bài 5: Giá trị của m để phương trình | x – m | = 2 có nghiệm là x = 1 ?

A. m ∈ { 1 }

B. m ∈ { – 1;3 }

C. m ∈ { – 1;0 }

D. m ∈ { 1;2 }

Lời giải:

Phương trình có nghiệm x = 1, khi đó ta có:

| 1 – m | = 2 ⇔ Bài tập Phương trình chứa dấu giá trị tuyệt đối | Lý thuyết và Bài tập Toán 8 có đáp án

Vậy giá trị m cần tìm là m ∈ { – 1;3 }

Chọn đáp án B.

Bài 6: Rút gọn biểu thức A = |2x + 4| + 2(x – 3) với x > 0

A. 4x – 2 B. 3 – 4x C. -10 D. 4x -10

Lời giải:

Bài tập Phương trình chứa dấu giá trị tuyệt đối | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án A

Bài 7: Với x > 2 thì |3 – (2x – 1)| bằng ?

A. 2x + 4 B. 2x – 4 C. 2x – 1 D. 2x – 2

Lời giải:

Bài tập Phương trình chứa dấu giá trị tuyệt đối | Lý thuyết và Bài tập Toán 8 có đáp án

Bài 8: Tìm tất cả các giá trị của x thỏa mãn: |6 – 2(x + 2)| = 2 – 2x

A. x = 1 B. x < 1 C. x ≤ 1 D. x > 1

Lời giải:

Bài tập Phương trình chứa dấu giá trị tuyệt đối | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án C

Bài 9: Giải phương trình sau: |x + 1| = 2x + 7

A. x = 8 hoặc x = -2

B. x = 2

C. x = 2 hoặc x = 8

D. x = 8

Lời giải:

Ta có: |x + 1| = x + 1 nếu x ≥ -1 Và |x + 1| = -x – 1 nếu x < -1

Để giải phương trình đã cho ta quy về giải hai phương trình sau:

* Phương trình x + 1 = 2x -7 với ⇔ -x = – 7 -1 ⇔ – x = -8 ⇔ x = 8 (thỏa mãn điều kiện )

* Phương trình –x – 1= 2x – 7 với x < -1

⇔ -x – 2x = -7 + 1

⇔ – 3x = – 6

⇔ x = 2 ( không thỏa mãn điều kiện x < -1)

Vậy nghiệm của phương trình đã cho là x = 8

Chọn đáp án D

Bài 10: Giải phương trình |2 – (x + 4)| = |2x – 3(x + 2)|

A. x = 3 hoặc x = -4

B. x = 1 hoặc x = -2

C. x = -4

D. x = 4 và x = 2

Lời giải:

Bài tập Phương trình chứa dấu giá trị tuyệt đối | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án C

II. Bài tập tự luận có giải

Bài 1: Cho các khẳng định sau:

(1) |x – 3| = 1 chỉ có một nghiệm là x = 2

(2) x = 4 là nghiệm của phương trình |x – 3| = 1

(3) |x – 3| = 1 có hai nghiệm là x = 2 và x = 4

Các khẳng định đúng là?

Hướng dẫn giải

Lời giải

Xét phương trình |x – 3| = 1

TH1: |x – 3| = x – 3 khi x – 3 ≥ 0 ⇔ x ≥ 3

Phương trình đã cho trở thành x – 3 = 1 ⇔ x = 4 (TM)

TH2: |x – 3| = 3 – x khi x – 3 < 0 ⇔ x < 3

Phương trình đã cho trở thành 3 – x = 1 ⇔ x = 2 (TM)

Vậy phương trình |x – 3| = 1 có hai nghiệm x = 2 và x = 4

Nên x = 4 là nghiệm của phương trình |x – 3| = 1

Khẳng định đúng là (2) và (3)

Bài 2: Cho các khẳng định sau:

(1) Phương trình |x – 3| = 1 chỉ có một nghiệm là x = 2

(2) Phương trình |x – 1| = 0 có 2 nghiệm phân biệt

(3) Phương trình |x – 3| = 1 có hai nghiệm phân biệt là x = 2 và x = 4

Số khẳng định đúng là?

Lời giải

Xét phương trình |x – 3| = 1

TH1: |x – 3| = x – 3 khi x – 3 ≥ 0 ⇔ x ≥ 3

Phương trình đã cho trở thành x – 3 = 1 ⇔ x = 4 (TM)

TH2: |x – 3| = 3 – x khi x – 3 < 0 ⇔ x < 3

Phương trình đã cho trở thanh 3 – x = 1 ⇔ x = 2 (TM)

Vậy phương trình |x – 3| = 1 có hai nghiệm x = 2 và x = 4 hay (1) sai và (3) đúng

|x – 1| = 0 ⇔ x – 1 = 0  ⇔ x = 1 nên phương trình |x – 1| = 0 có nghiệm duy nhất hay (2) sai.

Vậy có 1 khẳng định đúng

Bài 3: Nghiệm nhỏ nhất của phương trình |2 + 3x| = |4x – 3| là

Lời giải

Ta có |2 + 3x| = |4x – 3|

Trắc nghiệm Phương trình chứa dấu giá trị tuyệt đối có đáp án

Vậy nghiệm nhỏ nhất của phương trình là x = Trắc nghiệm Phương trình chứa dấu giá trị tuyệt đối có đáp án

Bài 4 Nghiệm nhỏ nhất của phương trình |5 – 2x| = |x – 1| là?

Lời giải

Ta có |5 – 2x| = |x – 1|

Trắc nghiệm Phương trình chứa dấu giá trị tuyệt đối có đáp án

Vậy nghiệm nhỏ nhất của phương trình là x = 2

Bài 5 Tổng các nghiệm của phương trình |3x – 1| = x + 4 là? 

Lời giải

TH1: |3x – 1| = 3x – 1 khi |3x – 1| ≥ 0 ⇔ 3x ≥ 1 ⇔ x ≥ Trắc nghiệm Phương trình chứa dấu giá trị tuyệt đối có đáp án

Phương trình đã cho trở thành 3x – 1 = x + 4

⇔ 2x = 5 ⇔ x = Trắc nghiệm Phương trình chứa dấu giá trị tuyệt đối có đáp án (TM)

TH2: |3x – 1| = 1 – 3x khi 3x – 1 < 0 ⇔ x < Trắc nghiệm Phương trình chứa dấu giá trị tuyệt đối có đáp án

Phương trình đã cho trở thành 1 – 3x = x + 4

Trắc nghiệm Phương trình chứa dấu giá trị tuyệt đối có đáp án

Bài 6 Rút gọn các biểu thức:

a) C = |-3x| + 7x – 4 khi x ≤ 0;

b) D = 5 – 4x + |x – 6| khi x < 6.

Lời giải

a) x ≤ 0 nên – 3x ≥ 0 ⇒ |-3x| = -3x

Vậy C = |-3x| + 7x – 4 = -3x + 7x – 4 = 4x – 4

b) x < 6 nên x – 6 < 0 ⇒ |x – 6| = -(x – 6) = 6 – x

Vậy D = 5 – 4x + |x – 6| = 5 – 4x + 6 – x = 11 – 5x

Bài 7 Giải các phương trình:

a) |x + 5| = 3x + 1;

b) |-5x| = 2x + 21.

Lời giải

a) Với x ≥ -5 thì x + 5 ≥ 0 nên |x + 5| = x + 5

x + 5 = 3x + 1 ⇔ 2x = 4 ⇔ x = 2 (thỏa mãn điều kiện x ≥ -5)

Với x < -5 thì x + 5 < 0 nên |x + 5| = – (x + 5) = – x – 5

-x – 5 = 3x + 1 ⇔ 4x = -6 ⇔ x = \frac{-3}{2}(không thỏa mãn điều kiện x ≤ -5)

Vậy tập nghiệm của bất phương trình |x + 5| = 3x + 1 là S = {2}

a) Với x ≥ 0 thì – 5x ≤ 0 nên |-5x| = -(-5x) = 5x

|-5x|= 2x + 21 ⇔ 5x = 2x + 21

⇔ 3x = 21 ⇔ x = 7 (không thỏa mãn điều kiện x ≥0)

Với x < 0 thì – 5x > 0 nên |-5x| = -5x

|-5x|= 2x + 21 ⇔ -5x = 2x + 21

⇔ -7x = 21 ⇔ x = -3 (thỏa mãn điều kiện x < 0)

Vậy tập nghiệm của bất phương trình |-5x|= 2x + 21 là S = {-3}

Bài 8 Bỏ dấu giá trị tuyệt đối và rút gọn các biểu thức:

a) A = 3x + 2 + |5x| trong hai trường hợp: x ≥ 0 và x < 0;

b) B = |-4x| – 2x + 12 trong hai trường hợp: x ≤ 0 và x > 0;

c) C = |x – 4| – 2x + 12 khi x > 5;

d) D = 3x + 2 + |x + 5|.

Ghi nhớ

(Trước khi đi vào lời giải, bạn cần ghi nhớ: Trị tuyệt đối của một số không âm bằng chính nó; Trị tuyệt đối của một số âm bằng số đối của nó.

Ví dụ:

|5x| = 5x khi x ≥ 0

|5x| = -5x khi x < 0)

Lời giải:

(Bài dưới được trình bày dựa theo cách trình bày ở Ví dụ 1 trang 50 sgk Toán 8 Tập 2. Bạn có thể rút gọn nếu bạn thích.)

a) – Khi x ≥ 0 ta có 5x ≥ 0 nên |5x| = 5x

Vậy A = 3x + 2 + 5x = 8x + 2

– Khi x < 0 ta có 5x < 0 nên |5x| = -5x

Vậy A = 3x + 2 – 5x = -2x + 2

b) – Khi x ≤ 0 ta có -4x ≥ 0 (nhân hai vế với số âm) nên |-4x| = -4x

Vậy B = -4x – 2x + 12 = -6x + 12

– Khi x > 0 ta có -4x < 0 nên |-4x| = -(-4x) = 4x

Vậy B = 4x – 2x + 12 = 2x + 12

c) – Khi x > 5 ta có x – 4 > 1 (trừ hai vế cho 4) hay x – 4 > 0 nên |x – 4| = x – 4

Vậy C = x – 4 – 2x + 12 = -x + 8

d) D = 3x + 2 + x + 5 khi x + 5 ≥ 0

hoặc D = 3x + 2 – (x + 5) khi x + 5 < 0

Vậy D = 4x + 7 khi x ≥ -5

hoặc D = 2x – 3 khi x < -5

Bài 9 Giải các phương trình:

a) |2x| = x – 6 ; b) |-3x| = x – 8

c) |4x| = 2x + 12 ; d) |-5x| – 16 = 3x

Lời giải:

a) |2x| = x – 6 (1)

Ta có: |2x| = 2x khi 2x ≥ 0 hay x ≥ 0

|2x| = -2x khi 2x < 0 hay x < 0.

Vậy phương trình (1) tương đương với:

+ 2x = x – 6 với điều kiện x ≥ 0

2x = x – 6 ⇔ x = -6

Giá trị x = -6 không thỏa mãn điều kiện x ≥ 0 nên không phải nghiệm của (1)

+ -2x = x – 6 với điều kiện x < 0

-2x = x – 6 ⇔ -3x = -6 ⇔ x = 2.

Giá trị x = 2 không thỏa mãn điều kiện x < 0 nên không phải nghiệm của (1).

Vậy phương trình (1) vô nghiệm.

b) |-3x| = x – 8 (2)

Ta có: |-3x| = -3x khi -3x ≥ 0 hay x ≤ 0.

|-3x| = -(-3x) = 3x khi -3x < 0 hay x > 0.

Vậy phương trình (2) tương đương với:

+ -3x = x – 8 với điều kiện x ≤ 0

-3x = x – 8 ⇔ -4x = -8 ⇔ x = 2

Giá trị x = 2 không thỏa mãn điều kiện x ≤ 0 nên không phải nghiệm của (2).

+ 3x = x – 8 với điều kiện x > 0

3x = x – 8 ⇔ 2x = -8 ⇔ x = -4.

Giá trị x = -4 không thỏa mãn điều kiện x > 0 nên không phải nghiệm của (2).

Vậy phương trình (2) vô nghiệm.

c) |4x| = 2x + 12 (3)

Ta có: |4x| = 4x khi 4x ≥ 0 ⇔ x ≥ 0

|4x| = -4x khi 4x < 0 hay x < 0.

Vậy phương trình (3) tương đương với:

+ 4x = 2x + 12 với điều kiện x ≥ 0

4x = 2x + 12 ⇔ 2x = 12 ⇔ x = 6.

Giá trị x = 6 thỏa mãn điều kiện x ≥ 0 nên là nghiệm của (3)

+ -4x = 2x + 12 với điều kiện x < 0

-4x = 2x + 12 ⇔ -6x = 12 ⇔ x = -2.

Giá trị x = -2 thỏa mãn điều kiện x < 0 nên là nghiệm của (3).

Vậy phương trình (3) có hai nghiệm x = 6 và x = -2.

d) |-5x| – 16 = 3x (4)

Ta có: |-5x| = -5x khi -5x ≥ 0 hay x ≤ 0.

|-5x| = -(-5x) = 5x khi -5x < 0 hay x > 0.

Vậy phương trình (4) tương đương với:

+ -5x – 16 = 3x với điều kiện x ≤ 0.

-5x – 16 = 3x ⇔ -5x – 3x = 16 ⇔ -8x = 16 ⇔ x = -2.

Giá trị x = -2 thỏa mãn điều kiện x ≤ 0 nên là nghiệm của (4).

+ 5x – 16 = 3x với điều kiện x > 0.

5x – 16 = 3x ⇔ 5x – 3x = 16 ⇔ 2x = 16 ⇔ x = 8

Giá trị x = 8 thỏa mãn điều kiện x > 0 nên là nghiệm của (4).

Vậy phương trình (4) có nghiệm x = -2 và x = 8.

Bài 10 Giải các phương trình:

a) |x – 7| = 2x + 3; b) |x + 4| = 2x – 5

c) |x+ 3| = 3x – 1; d) |x – 4| + 3x = 5

Lời giải:

a) |x – 7| = 2x + 3 (1)

Ta có: |x – 7| = x – 7 khi x – 7 ≥ 0 hay x ≥ 7.

|x – 7| = -(x – 7) = 7 – x khi x – 7 < 0 hay x < 7.

Vậy phương trình (1) tương đương với:

+ x – 7 = 2x + 3 khi x ≥ 7

x – 7 = 2x + 3 ⇔ x = -10.

Giá trị x = -10 không thỏa mãn điều kiện x ≥ 7 nên không phải nghiệm của (1).

+ 7 – x = 2x + 3 khi x < 7.

7 – x = 2x + 3 ⇔ 3x = 4 ⇔ x = 43

Giá trị x = 43 thỏa mãn điều kiện x < 7 nên là nghiệm của (1)

Vậy phương trình (1) có nghiệm x = 43.

b) |x + 4| = 2x – 5 (2)

Ta có: |x + 4| = x + 4 khi x + 4 ≥ 0 hay x ≥ -4.

|x + 4| = -(x + 4) = -x – 4 khi x + 4 < 0 hay x < -4.

Vậy phương trình (1) tương đương với:

+ x + 4 = 2x – 5 khi x ≥ -4

x + 4 = 2x – 5 ⇔ x = 9

Giá trị x = 9 thỏa mãn điều kiện x ≥ -4 nên là nghiệm của (2).

+ -x – 4 = 2x – 5 khi x < -4.

– x – 4 = 2x – 5 ⇔ 3x = 1 ⇔ x = 13

Giá trị x = 13 không thỏa mãn điều kiện x < -4 nên không phải nghiệm của (2)

Vậy phương trình (2) có nghiệm x = 9.

Giải bài tập SGK Toán lớp 8 bài 5: Phương trình chứa dấu giá trị tuyệt đối

Vậy phương trình có nghiệm Giải bài 23 trang 47 SGK Toán 8 Tập 2 | Giải toán lớp 8

III. Bài tập vận dụng

Bài 1 Giải các phương trình:

a) |2x|=x−6

b) |−3x|=x−8

c) |4x|=2x+12

d) |−5x|−16=3x

Bài 2 Bỏ dấu giá trị tuyệt đối và rút gọn các biểu thức:

a) A=3x+2+|5x|trong hai trường hợp x≥0và x<0

b) B=|4x|−2x+12trong hai trường hợp x≤0và x>0

c) C=|x−4|−2x+12khi x>5

d) D=3x+2+|x+5|

Bài 3 Giải các phương trình:

a) |x−7|=2x+3

b) |x+4|=2x−5

c) |x+3|=3x−1

d) |x−4|+3x=5

Bài 4 Cho m>n,chứng minh:

a) m+2>n+2

b) −2m<−2n

c) 2m–5>2n–5

d) 4–3m<4–3n

Bài 5 Kiểm tra xem -2 là nghiệm của bất phương trình nào trong các bất phương trình sau:

a) −3x+2>−5

b) 10–2x<2

c) x2–5<1

d) |x|<3

e) |x|>2

f) x+1>7–2x

Bài 6 Giải các bất phương trình và biểu diễn tập nghiệm trên trục số:

a) x–1<3

b) x+2>1

c) 0,2x<0,6

d) 4+2x<5

Bài 7 Giải các bất phương trình:

a) 2−x4<5                                           

b) 3≤2x+35

c) 4x−53>7−x5

d) 2x+3−4≥4−x−3

Bài 8 Giải các bất phương trình:

a) 3–2x>4

b) 3x+4<2

c) (x–3)2<x2–3

d) (x−3)(x+3)<(x+2)2+3

Bài 9 Tìm x sao cho:

a) Giá trị của biểu thức 5–2xlà số dương

b) Giá trị của biểu thức x+3nhỏ hơn giá trị của biểu thức 4x–5

c) Giá trị của biểu thức 2x+1không nhỏ hơn giá trị của biểu thức x+3

d) Giá trị của biểu thức x2+1không lớn hơn giá trị của biểu thức (x–2)2

Bài 10 Trong một cuộc thi đố vui. Ban tổ chức quy định mỗi người dự thi phải trả lời 10 câu hỏi ở vòng sơ tuyển. Mỗi câu hỏi này có sẵn 4 đáp án, nhưng trong đó chỉ có 1 đáp án đúng. Người dự thi chọn đáp án đúng sẽ được 5 điểm, chọn đáp án sai sẽ bị trừ đi 1 điểm. Ở vòng sơ tuyển, Ban tổ chức tặng cho mỗi người dự thi 10 điểm và quy định người nào có tổng số điểm từ 40 trở lên mới được dự thi ở vòng tiếp theo. Hỏi người dự thi phải trả lời chính xác bao nhiêu câu hỏi ở vong sơ tuyển thì mới được dự thi tiếp ở vòng sau?

Bài 11 Giải các phương trình:

a) |3x|=x+8

b) |−2x|=4x+18

c) |x–5|=3x

d) |x+2|=2x–10

B. Lý thuyết Phương trình chứa dấu giá trị tuyệt đối

1. Giá trị tuyệt đối của một số

Giá trị tuyệt đối của số a, ký hiệu là a, được định nghĩa là khoảng cách từ số a đến số 0 trên trục số.

Như vậy: a=a khi a≥0 và a=−a khi a<0

Ta cũng có thể viết:   a=a        khi   a≥0−a    khi   a≤0.

2. Tính chất

Ta luôn có:   a≥0;        −a=a;            a2=a2                

3. Cách giải phương trình chứa dấu giá trị tuyệt đối

a) Giải phươmg trình dạng  a=b

Cách giải: Ta có  a=b⇔a=ba=−b.

b) Giải phương trình dạng   a=b

Cách giải: Ta có thể làm theo hai cách sau:

Cách 1: Xét 2 trường hợp 

Trường hợp 1. Với a≥0 phương trình có dạng  a=b;

Trường hợp 2. Với a<0 phương trình có dạng   −a=b.

Cách 2: Ta có  a=b⇔b≥0a=ba=−b.

Xem thêm

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

20 câu Trắc nghiệm Tập hợp Q các số hữu tỉ (Cánh diều) có đáp án 2023 – Toán lớp 7

Next post

Bài giảng điện tử Ôn tập hình học và đo lường | Giáo án PPT Toán 3

Bài liên quan:

Bài giảng điện tử Đơn thức | Kết nối tri thức Giáo án PPT Toán 8

Bài giảng điện tử Toán 8 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 8

20 câu Trắc nghiệm Đơn thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8

Trọn bộ Trắc nghiệm Toán 8 Kết nối tri thức có đáp án

Giải sgk tất cả các môn lớp 8 Kết nối tri thức | Giải sgk các môn lớp 8 chương trình mới

20 Bài tập Đơn thức nhiều biến. Đa thức nhiều biến (sách mới) có đáp án – Toán 8

Giải VTH Toán 8 Kết nối tri thức | Vở thực hành Toán 8 Kết nối tri thức (hay, chi tiết)

Giải SBT Toán 8 Kết nối tri thức | Sách bài tập Toán 8 Kết nối tri thức (hay, chi tiết)

Leave a Comment Hủy

Mục lục

  1. Bài giảng điện tử Đơn thức | Kết nối tri thức Giáo án PPT Toán 8
  2. Bài giảng điện tử Toán 8 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 8
  3. 20 câu Trắc nghiệm Đơn thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  4. Trọn bộ Trắc nghiệm Toán 8 Kết nối tri thức có đáp án
  5. Giải sgk tất cả các môn lớp 8 Kết nối tri thức | Giải sgk các môn lớp 8 chương trình mới
  6. 20 Bài tập Đơn thức nhiều biến. Đa thức nhiều biến (sách mới) có đáp án – Toán 8
  7. Giải VTH Toán 8 Kết nối tri thức | Vở thực hành Toán 8 Kết nối tri thức (hay, chi tiết)
  8. Giải SBT Toán 8 Kết nối tri thức | Sách bài tập Toán 8 Kết nối tri thức (hay, chi tiết)
  9. Giải sgk Toán 8 (cả 3 bộ sách) | Giải bài tập Toán 8 (hay, chi tiết)
  10. Lý thuyết Đơn thức (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  11. Tổng hợp Lý thuyết Toán lớp 8 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 8 Kết nối tri thức hay, chi tiết
  12. Giáo án Toán 8 Bài 1 (Kết nối tri thức 2023): Đơn thức
  13. Giáo án Toán 8 Kết nối tri thức năm 2023 (mới nhất)
  14. Giải SGK Toán 8 Bài 1 (Kết nối tri thức): Đơn thức
  15. Giải sgk Toán 8 Kết nối tri thức | Giải bài tập Toán 8 Kết nối tri thức Tập 1, Tập 2 (hay, chi tiết)
  16. Bài giảng điện tử Đa thức | Kết nối tri thức Giáo án PPT Toán 8
  17. 20 câu Trắc nghiệm Đa thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  18. Lý thuyết Đa thức (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  19. Giáo án Toán 8 Bài 2 (Kết nối tri thức 2023): Đa thức
  20. Giải SGK Toán 8 Bài 2 (Kết nối tri thức): Đa thức
  21. Bài giảng điện tử Phép cộng và phép trừ đa thức | Kết nối tri thức Giáo án PPT Toán 8
  22. 20 câu Trắc nghiệm Phép cộng và phép trừ đa thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  23. 20 Bài tập Các phép tính với đa thức nhiều biến (sách mới) có đáp án – Toán 8
  24. Lý thuyết Phép cộng và phép trừ đa thức (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  25. Giáo án Toán 8 Bài 3 (Kết nối tri thức 2023): Phép cộng và phép trừ đa thức
  26. Giải SGK Toán 8 Bài 3 (Kết nối tri thức): Phép cộng và phép trừ đa thức
  27. Bài giảng điện tử Luyện tập chung trang 17 | Kết nối tri thức Giáo án PPT Toán 8
  28. Giải SGK Toán 8 (Kết nối tri thức) Luyện tập chung trang 17
  29. Bài giảng điện tử Phép nhân đa thức | Kết nối tri thức Giáo án PPT Toán 8
  30. 20 câu Trắc nghiệm Phép nhân đa thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  31. Lý thuyết Phép nhân đa thức (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  32. Giáo án Toán 8 Bài 4 (Kết nối tri thức 2023): Phép nhân đa thức
  33. Giải SGK Toán 8 Bài 4 (Kết nối tri thức): Phép nhân đa thức
  34. Bài giảng điện tử Phép chia đa thức cho đơn thức | Kết nối tri thức Giáo án PPT Toán 8
  35. 20 câu Trắc nghiệm Phép chia đa thức cho đơn thức (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  36. Lý thuyết Phép chia đa thức cho đơn thức (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  37. Giáo án Toán 8 Bài 5 (Kết nối tri thức 2023): Phép chia đa thức cho đơn thức
  38. Giải SGK Toán 8 Bài 5 (Kết nối tri thức): Phép chia đa thức
  39. Bài giảng điện tử Luyện tập chung trang 25 | Kết nối tri thức Giáo án PPT Toán 8
  40. Giáo án Toán 8 (Kết nối tri thức 2023) Luyện tập chung trang 25
  41. Giải SGK Toán 8 (Kết nối tri thức): Luyện tập chung trang 25
  42. Bài giảng điện tử Bài tập cuối chương 1 trang 27 | Kết nối tri thức Giáo án PPT Toán 8
  43. Sách bài tập Toán 8 (Kết nối tri thức) Bài tập cuối chương 1
  44. Lý thuyết Toán 8 Chương 1 (Kết nối tri thức 2023): Đa thức hay, chi tiết
  45. Giáo án Toán 8 (Kết nối tri thức 2023) Bài tập cuối chương 1
  46. Giải SGK Toán 8 (Kết nối tri thức): Bài tập cuối chương 1 trang 27
  47. Bài giảng điện tử Hiệu hai bình phương. Bình phương của một tổng hay một hiệu | Kết nối tri thức Giáo án PPT Toán 8
  48. 20 câu Trắc nghiệm Hiệu hai bình phương. Bình phương của một tổng hay một hiệu (Kết nối tri thức 2023) có đáp án – Toán lớp 8
  49. Lý thuyết Hiệu hai bình phương. Bình phương của một tổng hay một hiệu (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8
  50. Giáo án Toán 8 Bài 6 (Kết nối tri thức 2023): Hiệu hai bình phương. Bình phương của một tổng hay một hiệu
  51. Giải SGK Toán 8 Bài 6 (Kết nối tri thức): Hiệu hai bình phương. Bình phương của một tổng hay một hiệu
  52. Bài giảng điện tử Lập phương của một tổng. Lập phương của một hiệu | Kết nối tri thức Giáo án PPT Toán 8

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán