Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Trắc nghiệm Toán 11

Cho tứ diện ABCD có hai mặt ABC và ADC nằm trong hai mặt phẳng vuông góc với nhau. Tam giác ABC vuông tại A có AB =a, AC =b. Tam giác ACD vuông tại D có CD = a.a) Chứng minh các tam giác BAD và BDC là các tam giác vuông.b) Gọi I và K lần lượt là trung điểm của AD và BC. Chứng minh IK là đường vuông góc chung của hai đường thẳng AD và BC.

By admin 19/04/2023 0

Câu hỏi:

Cho tứ diện ABCD có hai mặt ABC và ADC nằm trong hai mặt phẳng vuông góc với nhau. Tam giác ABC vuông tại A có AB =a, AC =b. Tam giác ACD vuông tại D có CD = a.a) Chứng minh các tam giác BAD và BDC là các tam giác vuông.b) Gọi I và K lần lượt là trung điểm của AD và BC. Chứng minh IK là đường vuông góc chung của hai đường thẳng AD và BC.

Trả lời:

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11Chứng minh tương tự, ta có tam giác AKD là tam giác cân tại K có KI là đường trung tuyến nên đồng thời là đường cao.⇒ IK ⊥ AD (2)Từ (1) và (2) suy ra; IK là đường vuông góc chung của hai đường thẳng AD và BC.

====== **** mời các bạn xem câu tiếp bên dưới **** =====

  1. Trong các mệnh đề sau đây, mệnh đề nào là đúng ?a) Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì chúng song song ;b) Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì chúng song song ;c) Mặt phẳng (α) vuông góc với đường thẳng b và b vuông góc với thẳng a, thì a song song với (α).d) Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì chúng song song.e) Hai đường thẳng cùng vuông góc với một đường thẳng thì chúng song song.

    Câu hỏi:

    Trong các mệnh đề sau đây, mệnh đề nào là đúng ?a) Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì chúng song song ;b) Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì chúng song song ;c) Mặt phẳng (α) vuông góc với đường thẳng b và b vuông góc với thẳng a, thì a song song với (α).d) Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì chúng song song.e) Hai đường thẳng cùng vuông góc với một đường thẳng thì chúng song song.

    Trả lời:

    a) Đúngb) Đúngc) Sai (vì a có thể nằm trong mp(α), xem hình vẽ)d) Sai, chẳng hạn hai mặt phẳng (α) và (β) cùng đi qua đường thẳng a và a ⊥ mp(P) nên (α) và (β) cùng vuông góc với mp(P) nhưng (α) và (β) cắt nhau.e) Sai, chẳng hạn a và b cùng ở trong mp(P) và mp(P) ⊥ d. Lúc đó a và b cùng vuông góc với d nhưng a và b có thể không song song nhau.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  2. Trong các điều khẳng định sau đây, điều nào đúng?a) Khoảng cách của hai đường thẳng chéo nhau là đoạn ngắn nhất trong các đoạn thẳng nối hai điểm bất kì nằm trên hai đường thẳng ấy và ngược lại.b) Qua một điểm có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước.c) Qua một đường thẳng có duy nhất một mặt phẳng vuông góc với một mặt phẳng khác cho trước.d) Đường thẳng nào vuông góc với cả hai đường thẳng chéo nhau cho trước là đường vuông góc chung của hai đường thẳng đó.

    Câu hỏi:

    Trong các điều khẳng định sau đây, điều nào đúng?a) Khoảng cách của hai đường thẳng chéo nhau là đoạn ngắn nhất trong các đoạn thẳng nối hai điểm bất kì nằm trên hai đường thẳng ấy và ngược lại.b) Qua một điểm có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước.c) Qua một đường thẳng có duy nhất một mặt phẳng vuông góc với một mặt phẳng khác cho trước.d) Đường thẳng nào vuông góc với cả hai đường thẳng chéo nhau cho trước là đường vuông góc chung của hai đường thẳng đó.

    Trả lời:

    Câu a) đúng. Khoảng cách của hai đường thẳng chéo nhau là đoạn ngắn nhất trong các đoạn thẳng nối hai điểm bất kì nằm trên hai đường thẳng ấy và ngược lại (xem mục c). Tính chất của khoảng cách giữa hai đường thẳng chéo nhau (Bài 5 – chương III).Câu b) sai. Qua một điểm có vô số mặt phẳng vuông góc với một mặt phẳng cho trước.Câu c) sai. Vì trong trường hợp đường thẳng vuông góc với mặt phẳng thì ta có vô số mặt phẳng vuông góc với mặt phẳng cho trước vì bất kì mặt phẳng nào chứa đường thẳng cũng đều vuông góc với mặt phẳng cho trước. Để có khẳng định đúng ta phải nói: Qua một đường thẳng không vuông góc với một mặt phẳng có duy nhất một mặt phẳng vuông góc với mặt phẳng đã cho.Câu d) sai. Vì đường vuông góc chung của hai đường thẳng phải cắt cả hai đường ấy.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  3. Hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh SA = a và vuông góc với mặt phẳng (ABCD).a) Chứng minh rằng các mặt bên của hình chóp là những tam giác vuông.b) Mặt phẳng (α) đi qua A và vuông góc với cạnh SC lần lượt cắt SB, AC, SD tại B', C', D'. Chứng minh B'D' song song với BD và AB' vuông góc với SB.

    Câu hỏi:

    Hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh SA = a và vuông góc với mặt phẳng (ABCD).a) Chứng minh rằng các mặt bên của hình chóp là những tam giác vuông.b) Mặt phẳng (α) đi qua A và vuông góc với cạnh SC lần lượt cắt SB, AC, SD tại B’, C’, D’. Chứng minh B’D’ song song với BD và AB’ vuông góc với SB.

    Trả lời:

    Giải bài 3 trang 121 sgk Hình học 11 | Để học tốt Toán 11Giải bài 3 trang 121 sgk Hình học 11 | Để học tốt Toán 11Giải bài 3 trang 121 sgk Hình học 11 | Để học tốt Toán 11Giải bài 3 trang 121 sgk Hình học 11 | Để học tốt Toán 11

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  4. Hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và có góc BAD = 60o. Gọi O là giao điểm của AC và BD. Đường thẳng SO vuông góc với mặt phẳng (ABCD) và SO = 3a/4 . Gọi E là trung điểm của đoạn BC và F là trung điểm của đoạn BE.a) Chứng minh mặt phẳng (SOF) vuông góc với mặt phẳng (SBC).b) Tính các khoảng cách từ O và A đến mặt phẳng (SBC).

    Câu hỏi:

    Hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và có góc BAD = 60o. Gọi O là giao điểm của AC và BD. Đường thẳng SO vuông góc với mặt phẳng (ABCD) và SO = 3a/4 . Gọi E là trung điểm của đoạn BC và F là trung điểm của đoạn BE.a) Chứng minh mặt phẳng (SOF) vuông góc với mặt phẳng (SBC).b) Tính các khoảng cách từ O và A đến mặt phẳng (SBC).

    Trả lời:

    Giải bài 4 trang 121 sgk Hình học 11 | Để học tốt Toán 11Giải bài 4 trang 121 sgk Hình học 11 | Để học tốt Toán 11

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  5. Cho khối lập phương ABCD.A'B'C'D' cạnh a.a) Chứng minh BC' vuông góc với mặt phẳng (A'B'CD)b) Xác định và tính độ dài đoạn vuông góc chung của AB' và BC'.

    Câu hỏi:

    Cho khối lập phương ABCD.A’B’C’D’ cạnh a.a) Chứng minh BC’ vuông góc với mặt phẳng (A’B’CD)b) Xác định và tính độ dài đoạn vuông góc chung của AB’ và BC’.

    Trả lời:

    Giải bài 6 trang 122 sgk Hình học 11 | Để học tốt Toán 11Giải bài 6 trang 122 sgk Hình học 11 | Để học tốt Toán 11b) Do AD’ // BC’ nên mp(AB’D’) là mặt phẳng chứa AB’ và song song với BC’.Ta tìm hình chiếu của BC’ trên mp ( AB’D’).Gọi E và F lần lượt là tâm của các mặt bên ADD’A’ và BCB’C’.Giải bài 6 trang 122 sgk Hình học 11 | Để học tốt Toán 11Vậy H là hình chiếu F trên mp (AB’D’). Qua H ta dựng đường thẳng song song với BC’ thì đường thẳng này chính là hình chiếu của BC’ trên mp(AB’D’).Đường thẳng qua H song song với BC’ cắt AB’ tại K. Qua K kẻ đường thẳng song song với HF, đường này cắt BC’ tại I. Khi đó, KI chính là đường vuông góc chung của AB’ và BC’.Giải bài 6 trang 122 sgk Hình học 11 | Để học tốt Toán 11

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

Tags : Tags Bài tập ôn tập chương 3
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Cho mẫu số liệu sau:   156    158    160    162    164. Nếu bổ sung hai giá trị 154, 167 vào mẫu số liệu này thì so với mẫu số liệu ban đầu:

Next post

Gọi S là tập hợp tất cả các giá trị thực của tham số m để giá trị nhỏ nhất của hàm số y=x3−3×2+m  trên đoạn −2;2  bằng 3. Tính tổng tất cả các phần tử của S.

Bài liên quan:

d) Xác định thiết diện của hình chóp bởi mặt phẳng qua A và vuông góc với SC. Tính diện tích thiết diện đó.

c) Tính khoảng cách từ A đến (SBC).

b) Gọi H là chân đường cao vẽ từ B của tam giác ABC. Chứng minh SAC⊥SBH

Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại B, SA vuông góc với đáy,SA=a2 ,AB=a , BC=2a. a) Chứng minh tam giác SBC vuông.

c) Cho hàm số y=−x3+3×2−3  có đồ thị (C). Viết phương trình tiếp tuyến của (C) vuông góc với đường thẳng y=19x+2019

b) Viết phương trình tiếp tuyến của đường cong y=x3   tại điểm có tung độ bằng 8.

a) Cho hàm số fx=x2+3x−4x−1khi   x>1−2ax+1khi   x≤1 . Xác định a để hàm số liên tục tại điểm x=1

c) Tính giới hạn limx→+∞x2+x−x3−x23

Leave a Comment Hủy

Mục lục

  1. d) Xác định thiết diện của hình chóp bởi mặt phẳng qua A và vuông góc với SC. Tính diện tích thiết diện đó.
  2. c) Tính khoảng cách từ A đến (SBC).
  3. b) Gọi H là chân đường cao vẽ từ B của tam giác ABC. Chứng minh SAC⊥SBH
  4. Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại B, SA vuông góc với đáy,SA=a2 ,AB=a , BC=2a. a) Chứng minh tam giác SBC vuông.
  5. c) Cho hàm số y=−x3+3×2−3  có đồ thị (C). Viết phương trình tiếp tuyến của (C) vuông góc với đường thẳng y=19x+2019
  6. b) Viết phương trình tiếp tuyến của đường cong y=x3   tại điểm có tung độ bằng 8.
  7. a) Cho hàm số fx=x2+3x−4x−1khi   x>1−2ax+1khi   x≤1 . Xác định a để hàm số liên tục tại điểm x=1
  8. c) Tính giới hạn limx→+∞x2+x−x3−x23
  9. b) Tính giới hạn A=limx→2×3−8x−2
  10. a) Tính giới hạn lim34.2n+1−5.3n .
  11. Giới hạn limx→01+x−1x  bằng 
  12. Đạo hàm của hàm số fx=x2+x+x+1x  tại x0=−1  bằng
  13. Cho fx=1+3x+1+2×3,  gx=sinx . Giá trị f’0g’0  bằng
  14. Cho hàm số fx=sin5x5xx≠0a+2x=0 . Giá trị của a để hàm số f(x) liên tục tại x=0 là
  15. Giá trị limx→12×2+x−3x−1  bằng 
  16. Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA⊥ABCD , gọi O là tâm hình vuông ABCD. Khẳng định nào sau đây sai?
  17. Giá trị limnn+1−n−1  bằng
  18. Cho hình chóp S.ABCD có SA⊥ABCD  và và đáy là hình vuông. Khẳng định nào sau đây đúng?
  19. Cho hàm số fx=45×5−6 . Số nghiệm của phương trình f’x=4  là
  20. Cho hình lập phương ABCD.A1B1C1D1  có cạnh a. Gọi M là trung điểm AD. Giá trị B1M→.BD1→  bằng
  21. Phương trình tiếp tuyến của đồ thị hàm số y=x4+2×2−1  tại tiếp điểm có hoành độ bằng -1 là
  22. Trong các mệnh đề sau đây, mệnh đề nào là đúng?
  23. Cho hàm số y=2x+12x−1  có đồ thị (C). Hệ số góc của tiếp tuyến với (C) tại điểm có hoành độ bằng 0 là
  24. Cho hàm số fx=1−x2 . Khi đó f’12  bằng 
  25. Cho hình chóp S.ABC có đáy ABC là tam giác cân tại B, cạnh bên SA vuông góc với đáy, M là trung điểm BC, J là hình chiếu của A lên BC. Kí hiệu dA,  SBC  là khoảng cách giữa điểm A và mặt phẳng (SBC). Khẳng định nào sau đây đúng?
  26. Hai đường thẳng a và b nằm trong mp α . Hai đường thẳng a’ và b’ nằm trong mp β . Mệnh đề nào sau đây đúng?
  27. Giá trị limn−23n+1  bằng
  28. Cho a, b, c là các đường thẳng. Mệnh đề nào sau đây đúng?
  29. Giới hạn nào dưới đây có kết quả bằng 3?
  30. Trong không gian cho đường thẳng ∆ và điểm O. Qua O có mấy đường thẳng vuông góc với ∆ cho trước?
  31. c) Gọi M, N là trung điểm BC, CD. Xác định thiết diện của hình chóp đi qua M, N và song song với SC. Tính diện tích thiết diện.
  32. b) Chứng minh rằng SAC⊥SBD
  33. Cho hình chóp S.ABCD đáy là hình vuông cạnh a, mặt bên (SAB), (SAD) vuông góc với đáy, các mặt bên (SBC), (SCD) cùng tạo với đáy góc 60° a) Chứng minh rằng SBA^=SDA^=60°
  34. c) Viết phương trình tiếp tuyến song song với trục hoành của đồ thị hàm số y=x4−2×2+10
  35. b) Viết phương trình tiếp tuyến của đồ thị hàm số y=x3−2x+3  tại điểm M1;  2
  36. a) Tìm giá trị thực của tham số m để hàm số fx=m2x2khi   x≤21−mxkhi   x>2  liên tục trên ℝ .
  37. c) Tính giới hạn limx→+∞1×2+x+2−x
  38. b) Tính giới hạn limx→2x+2−2x−2 .
  39. a) Tính giới hạn lim3n−12n−2.3n+1 .
  40. Giới hạn limx→+∞x+a1x+a2…x+ann−x  bằng
  41. Vi phân của hàm số y=tanxx  là
  42. Xét hai khẳng định (1) Hàm số y=xx+1  liên tục tại x=0. (2) Hàm số y=xx+1  có đạo hàm tại x=0. Trong hai khẳng định trên
  43. Cho hình lập phương ABCD.A’B’C’D’  cạnh a. Tích vô hướng AB→.A’D→  bằng
  44. Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA⊥ABCD . Mặt phẳng qua A và vuông góc với SC cắt SB, SC, SD theo thứ tự tại H, M, K. Chọn khẳng định sai trong các khẳng định sau
  45. Giá trị limx→−1×2+2x+12×3+2  bằng 
  46. Cho hình chóp S.ABC có SA⊥ABC  và AB⊥BC , gọi I là trung điểm BC. Góc giữa hai mặt phẳng (SBC) và (ABC) là góc nào sau đây?
  47. Cho chuyển động thẳng xác định bởi phương trình S=t2−2t+3 , trong đó t được tính bằng giây và s được tính bằng mét. Vận tốc của chuyển động tại thời điểm t=2s   là
  48. Giá trị của limn2+6n−n  bằng
  49. Cho hàm số fx=x2−3x−3,x≠323, x=3  và các khẳng định (I) fx  liên tục tại x=3 . (II) fx  gián đoạn tại x=3 . (III) fx liên tục trên ℝ . Khẳng fx định đúng là 
  50. Hãy chọn phát biểu sai trong các phát biểu sau
  51. Hệ số góc của tiếp tuyến với đồ thị hàm số y=2×3−3×2+5  tại điểm có hoành độ -2 là
  52. Trong các mệnh đề sau đây, mệnh đề nào sai?

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán