Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Trắc nghiệm Toán 11

Từ thành phố A đến thành phố B có 3 con đường, từ thành phố A đến thành phố C có 2 con đường, từ thành phố B đến thành phố D có 2 con đường, từ thành phố C đến thành phố D có 3 con đường, không có con đường nào nối từ thành phố C đến thành phố B. Hỏi có bao nhiêu con đường đi từ thành phố A đến thành phố D.

By admin 27/04/2023 0

Câu hỏi:

Từ thành phố A đến thành phố B có 3 con đường, từ thành phố A đến thành phố C có 2 con đường, từ thành phố B đến thành phố D có 2 con đường, từ thành phố C đến thành phố D có 3 con đường, không có con đường nào nối từ thành phố C đến thành phố B. Hỏi có bao nhiêu con đường đi từ thành phố A đến thành phố D.

A. 6

B. 12

Đáp án chính xác

C. 18

D. 36

Trả lời:

Đáp án cần chọn là: BSố cách đi từ A đến D bằng cách đi từ A đến B rồi đến D là 3.2=6.Số cách đi từ A đến D bằng cách đi từ A đến C rồi đến D là 2.3=6.Áp dụng quy tắc cộng có : 6+6=12cách.

====== **** mời các bạn xem câu tiếp bên dưới **** =====

  1. Số điện thoại ở Huyện Củ Chi có 7 chữ số và bắt đầu bởi 3 chữ số đầu tiên là 790. Hỏi ở Huyện Củ Chi có tối đa bao nhiêu máy điện thoại:

    Câu hỏi:

    Số điện thoại ở Huyện Củ Chi có 7 chữ số và bắt đầu bởi 3 chữ số đầu tiên là 790. Hỏi ở Huyện Củ Chi có tối đa bao nhiêu máy điện thoại:

    A. 1000

    B. 100000

    C. 10000

    Đáp án chính xác

    D. 1000000

    Trả lời:

    Đáp án cần chọn là: CGọi số điện thoại cần tìm có dạng 790abcd¯ .Khi đó: a có 10 cách chọn, b có 10 cách chọn, c có 10 cách chọn, d có 10 cách chọn.Theo quy tắc nhân, có tất cả 10.10.10.10 = 104 số.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  2. Từ các chữ số 1,2,3,4,5,6,7 lập được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau và là số chẵn?

    Câu hỏi:

    Từ các chữ số 1,2,3,4,5,6,7 lập được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau và là số chẵn?

    A. 360

    Đáp án chính xác

    B. 343

    C. 523

    D. 347

    Trả lời:

    Đáp án cần chọn là: AGọi số tự nhiên có 4 chữ số cần tìm là abcd¯ (a≠0,a≠b≠c≠d)Vì abcd¯ là số chẵn nên d∈{2;4;6}⇒ Có 3 cách chọn d.Vì a≠d nên có 6 cách chọn ab≠a,d nên có 5 cách chọn bc≠a,b,d nên có 4 cách chọn cÁp dụng quy tắc nhân ta có số các số thỏa mãn là: 3.6.5.4=360 (số).Chú ýĐối với bài toán này, vì số cần lập là số chẵn nên ta ưu tiên chọn dd trước rồi mới đến các chữ số khác.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  3. Có bao nhiêu cách sắp xếp 8 viên bi đỏ khác nhau và 8 viên bi đen khác nhau thành một dãy sao cho hai viên bi cùng màu không được ở cạnh nhau?

    Câu hỏi:

    Có bao nhiêu cách sắp xếp 8 viên bi đỏ khác nhau và 8 viên bi đen khác nhau thành một dãy sao cho hai viên bi cùng màu không được ở cạnh nhau?

    A. 3251404800

    Đáp án chính xác

    B. 1625702400

    C. 72

    D. 36

    Trả lời:

    Đáp án cần chọn là: ADo hai viên bi cùng màu không được đứng cạnh nhau nên ta có trường hợp sau:Trường hợp 1: Các viên bi đỏ ở vị trí lẻ.Có 8  cách chọn viên bi đỏ ở vị trí 1.Có 7 cách chọn viên bi đỏ ở vị trí 3….Có 11  cách chọn viên bi đỏ ở vị trí 15.Suy ra có 8.7.6.5.4.3.2.1 =  40320 cách xếp viên bi đỏ.Tương tự có 8.7.6.5.4.3.2.1= 40320  cách xếp viên bi xanh.Vậy có 40320. 40320 =  1625 702 400 cách xếp.Trường hợp 2: Các viên bi đỏ ở vị trí chẵn ta cũng có cách xếp tương tự.Vậy theo quy tắc cộng ta có: 2. 1625 702 400=3251404800.Chú ýMột số em có thể sẽ chọn nhầm đáp án B vì chỉ xét có 1 trường hợp là sai.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  4. Có bao nhiêu cách sắp xếp 3 nữ sinh, 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ.

    Câu hỏi:

    Có bao nhiêu cách sắp xếp 3 nữ sinh, 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ.

    A. 6

    B. 72

    Đáp án chính xác

    C. 720

    D. 144

    Trả lời:

    Đáp án cần chọn là: BChọn vị trí cho hai nhóm 3 nam và 3 nữ có 2 cách chọn (1 nhóm ở vị trí chẵn và nhóm còn lại ở vị trí lẻ)Xếp 3 nam có: 3.2.1 cách xếp.Xếp 3 nữ có: 3.2.1 cách xếp.Vậy có 2. 3.2.12 = 72 cách xếp.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

  5. Trên giá sách có 10 quyển Văn khác nhau, 8 quyển sách Toán khác nhau và 6 quyển sách Tiếng Anh khác nhau. Hỏi có bao nhiêu cách chọn hai quyển sách khác môn?

    Câu hỏi:

    Trên giá sách có 10 quyển Văn khác nhau, 8 quyển sách Toán khác nhau và 6 quyển sách Tiếng Anh khác nhau. Hỏi có bao nhiêu cách chọn hai quyển sách khác môn?

    A. 230400

    B. 60

    C. 48

    D. 188

    Đáp án chính xác

    Trả lời:

    Đáp án cần chọn là: DTheo quy tắc nhân ta có:Trường hợp 1: Chọn một quyển Văn và một quyển Toán khác nhau.Theo quy tắc nhân có: 10.8=80 cáchTrường hợp 2: chọn một quyển Văn và một quyển Tiếng Anh khác nhau.Theo quy tắc  nhân có:  10.6=60 cáchTrường hợp 3: chọn một quyển Toán và một quyển Tiếng Anh khác nhau. Có: 8.6=48 cáchTheo quy tắc cộng ta có số cách chọn hai quyển sách khác môn là:  80+60+48=188 cách.Chú ýSau khi tính xong số cách cho mỗi trường hợp, một số em có thể sẽ áp dụng nhầm công thức nhân dẫn đến chọn nhầm đáp án A.

    ====== **** mời các bạn xem câu tiếp bên dưới **** =====

Tags : Tags Trắc nghiệm Quy tắc đếm có đáp án (Thông hiểu)
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Cho tam giác ABC có a = 10, b = 6 và c = 8. Kết quả nào trong các kết quả sau là số đo độ dài của trung tuyến AM?

Next post

Cho hàm số f(x) có bảng biến thiên như sau: Điểm cực tiểu của hàm số đã cho là:

Bài liên quan:

d) Xác định thiết diện của hình chóp bởi mặt phẳng qua A và vuông góc với SC. Tính diện tích thiết diện đó.

c) Tính khoảng cách từ A đến (SBC).

b) Gọi H là chân đường cao vẽ từ B của tam giác ABC. Chứng minh SAC⊥SBH

Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại B, SA vuông góc với đáy,SA=a2 ,AB=a , BC=2a. a) Chứng minh tam giác SBC vuông.

c) Cho hàm số y=−x3+3×2−3  có đồ thị (C). Viết phương trình tiếp tuyến của (C) vuông góc với đường thẳng y=19x+2019

b) Viết phương trình tiếp tuyến của đường cong y=x3   tại điểm có tung độ bằng 8.

a) Cho hàm số fx=x2+3x−4x−1khi   x>1−2ax+1khi   x≤1 . Xác định a để hàm số liên tục tại điểm x=1

c) Tính giới hạn limx→+∞x2+x−x3−x23

Leave a Comment Hủy

Mục lục

  1. d) Xác định thiết diện của hình chóp bởi mặt phẳng qua A và vuông góc với SC. Tính diện tích thiết diện đó.
  2. c) Tính khoảng cách từ A đến (SBC).
  3. b) Gọi H là chân đường cao vẽ từ B của tam giác ABC. Chứng minh SAC⊥SBH
  4. Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại B, SA vuông góc với đáy,SA=a2 ,AB=a , BC=2a. a) Chứng minh tam giác SBC vuông.
  5. c) Cho hàm số y=−x3+3×2−3  có đồ thị (C). Viết phương trình tiếp tuyến của (C) vuông góc với đường thẳng y=19x+2019
  6. b) Viết phương trình tiếp tuyến của đường cong y=x3   tại điểm có tung độ bằng 8.
  7. a) Cho hàm số fx=x2+3x−4x−1khi   x>1−2ax+1khi   x≤1 . Xác định a để hàm số liên tục tại điểm x=1
  8. c) Tính giới hạn limx→+∞x2+x−x3−x23
  9. b) Tính giới hạn A=limx→2×3−8x−2
  10. a) Tính giới hạn lim34.2n+1−5.3n .
  11. Giới hạn limx→01+x−1x  bằng 
  12. Đạo hàm của hàm số fx=x2+x+x+1x  tại x0=−1  bằng
  13. Cho fx=1+3x+1+2×3,  gx=sinx . Giá trị f’0g’0  bằng
  14. Cho hàm số fx=sin5x5xx≠0a+2x=0 . Giá trị của a để hàm số f(x) liên tục tại x=0 là
  15. Giá trị limx→12×2+x−3x−1  bằng 
  16. Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA⊥ABCD , gọi O là tâm hình vuông ABCD. Khẳng định nào sau đây sai?
  17. Giá trị limnn+1−n−1  bằng
  18. Cho hình chóp S.ABCD có SA⊥ABCD  và và đáy là hình vuông. Khẳng định nào sau đây đúng?
  19. Cho hàm số fx=45×5−6 . Số nghiệm của phương trình f’x=4  là
  20. Cho hình lập phương ABCD.A1B1C1D1  có cạnh a. Gọi M là trung điểm AD. Giá trị B1M→.BD1→  bằng
  21. Phương trình tiếp tuyến của đồ thị hàm số y=x4+2×2−1  tại tiếp điểm có hoành độ bằng -1 là
  22. Trong các mệnh đề sau đây, mệnh đề nào là đúng?
  23. Cho hàm số y=2x+12x−1  có đồ thị (C). Hệ số góc của tiếp tuyến với (C) tại điểm có hoành độ bằng 0 là
  24. Cho hàm số fx=1−x2 . Khi đó f’12  bằng 
  25. Cho hình chóp S.ABC có đáy ABC là tam giác cân tại B, cạnh bên SA vuông góc với đáy, M là trung điểm BC, J là hình chiếu của A lên BC. Kí hiệu dA,  SBC  là khoảng cách giữa điểm A và mặt phẳng (SBC). Khẳng định nào sau đây đúng?
  26. Hai đường thẳng a và b nằm trong mp α . Hai đường thẳng a’ và b’ nằm trong mp β . Mệnh đề nào sau đây đúng?
  27. Giá trị limn−23n+1  bằng
  28. Cho a, b, c là các đường thẳng. Mệnh đề nào sau đây đúng?
  29. Giới hạn nào dưới đây có kết quả bằng 3?
  30. Trong không gian cho đường thẳng ∆ và điểm O. Qua O có mấy đường thẳng vuông góc với ∆ cho trước?
  31. c) Gọi M, N là trung điểm BC, CD. Xác định thiết diện của hình chóp đi qua M, N và song song với SC. Tính diện tích thiết diện.
  32. b) Chứng minh rằng SAC⊥SBD
  33. Cho hình chóp S.ABCD đáy là hình vuông cạnh a, mặt bên (SAB), (SAD) vuông góc với đáy, các mặt bên (SBC), (SCD) cùng tạo với đáy góc 60° a) Chứng minh rằng SBA^=SDA^=60°
  34. c) Viết phương trình tiếp tuyến song song với trục hoành của đồ thị hàm số y=x4−2×2+10
  35. b) Viết phương trình tiếp tuyến của đồ thị hàm số y=x3−2x+3  tại điểm M1;  2
  36. a) Tìm giá trị thực của tham số m để hàm số fx=m2x2khi   x≤21−mxkhi   x>2  liên tục trên ℝ .
  37. c) Tính giới hạn limx→+∞1×2+x+2−x
  38. b) Tính giới hạn limx→2x+2−2x−2 .
  39. a) Tính giới hạn lim3n−12n−2.3n+1 .
  40. Giới hạn limx→+∞x+a1x+a2…x+ann−x  bằng
  41. Vi phân của hàm số y=tanxx  là
  42. Xét hai khẳng định (1) Hàm số y=xx+1  liên tục tại x=0. (2) Hàm số y=xx+1  có đạo hàm tại x=0. Trong hai khẳng định trên
  43. Cho hình lập phương ABCD.A’B’C’D’  cạnh a. Tích vô hướng AB→.A’D→  bằng
  44. Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA⊥ABCD . Mặt phẳng qua A và vuông góc với SC cắt SB, SC, SD theo thứ tự tại H, M, K. Chọn khẳng định sai trong các khẳng định sau
  45. Giá trị limx→−1×2+2x+12×3+2  bằng 
  46. Cho hình chóp S.ABC có SA⊥ABC  và AB⊥BC , gọi I là trung điểm BC. Góc giữa hai mặt phẳng (SBC) và (ABC) là góc nào sau đây?
  47. Cho chuyển động thẳng xác định bởi phương trình S=t2−2t+3 , trong đó t được tính bằng giây và s được tính bằng mét. Vận tốc của chuyển động tại thời điểm t=2s   là
  48. Giá trị của limn2+6n−n  bằng
  49. Cho hàm số fx=x2−3x−3,x≠323, x=3  và các khẳng định (I) fx  liên tục tại x=3 . (II) fx  gián đoạn tại x=3 . (III) fx liên tục trên ℝ . Khẳng fx định đúng là 
  50. Hãy chọn phát biểu sai trong các phát biểu sau
  51. Hệ số góc của tiếp tuyến với đồ thị hàm số y=2×3−3×2+5  tại điểm có hoành độ -2 là
  52. Trong các mệnh đề sau đây, mệnh đề nào sai?

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán