Cho đoạn thẳng AB có trung điểm O. Giả sử M là một điểm khác O sao cho MA = MB.
a) Hai tam giác \(\Delta MOA\) và \(\Delta MOB\) có bằng nhau hay không? Vì sao?
b) Đường thẳng MO có là đường trung trực của đoạn thẳng AB hay không? Vì sao?
Hướng dẫn giải chi tiết Hoạt động 3
Phương pháp giải
a) Chứng minh hai tam giác MOA và MOB bằng nhau theo trường hợp c.c.c.
b) Để xem MO có là đường trung trực của AB hay không, ta tìm mối liên hệ giữa MO và AB.
Lời giải chi tiết
a) Xét hai tam giác MOA và MOB có:
OA = OB (O là trung điểm của AB);
MO chung;
MA = MB.
Vậy \(\Delta MOA = \Delta MOB\)(c.c.c).
b) \(\Delta MOA = \Delta MOB\)nên \(\widehat {MOA} = \widehat {MOB} = \dfrac{1}{2}\widehat {AOB} = 90^\circ \)hay \(MO \bot AB\).
Vậy MO có là đường trung trực của đoạn thẳng AB (MO đi qua trung điểm O của đoạn thẳng AB và vuông góc với đoạn thẳng AB).
— *****
Trả lời