Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 10

15 câu Trắc nghiệm Ba đường conic trong mặt phẳng toạ độ (Chân trời sáng tạo 2023) có đáp án – Toán lớp 10

By admin 15/10/2023 0

Trắc nghiệm Toán 10 Bài 4: Ba đường conic trong mặt phẳng toạ độ

Câu 1. Cho hypebol (H): 4x2 – y2 = 1. Khẳng định nào sau đây đúng?

A. Hypebol có tiêu cự bằng 52;

B. Hypebol có một tiêu điểm là F5;0;

C. Hypebol có trục thực bằng 1;

D. Hypebol có trục ảo bằng 12.

Hướng dẫn giải

Đáp án đúng là: C

Ta có 4x2 – y2 = 1.

Suy ra x214−y21=1

Hay x2122−y212=1.

Khi đó ta có a = 12, b = 1.

• Ta có b=c2−a2

Suy ra c=b2+a2=1+14=52.

Vậy hypebol (H) có tiêu cự là 2c = 5≠52.

Do đó phương án A sai.

•Ta có c=52.

Suy ra hai tiêu điểm của (H) là F1−52;0,F252;0.

Do đó phương án B sai.

•Ta có trục thực là: A1A2 = 2a = 2.12 = 1.

Do đó phương án C đúng.

•Ta có trục ảo là: 2b = 2.1 = 2 ≠ 12.

Do đó phương án D sai.

Vậy ta chọn phương án C.

Câu 2. Cho parabol (P): y2 = 16x. Khẳng định nào sau đây sai?

A. (P) có tiêu điểm F(4; 0);

B. (P) có tọa độ đỉnh O(0; 0);

C. Phương trình đường chuẩn ∆: x = 4;

D. (P) nhận Ox làm trục đối xứng.

Hướng dẫn giải

Đáp án đúng là: C

•Ta có (P): y2 = 16x nên 2p = 16.

Suy ra p = 8.

Do đó p2=82=4.

Vì vậy (P) có tiêu điểm F(4; 0).

Do đó phương án A đúng.

• Ta có O(0; 0) là đỉnh của parabol (P) và Ox là trục đối xứng của parabol (P).

Do đó phương án B, D đúng.

Đến đây ta có thể chọn đáp án C.

• Phương trình đường chuẩn ∆ có dạng: x=−p2=−4.

Do đó phương án C sai.

Vậy ta chọn phương án C.

Câu 3. Elip có tỉ số giữa độ dài trục nhỏ và tiêu cự bằng 2, tổng bình phương độ dài trục lớn và tiêu cự bằng 64. Phương trình chính tắc của elip là:

A. x212+y28=1;

B. x28+y212=1;

C. x212+y24=1;

D. x28+y24=1.

Hướng dẫn giải

Đáp án đúng là: A

Ta có tỉ số giữa độ dài trục nhỏ và tiêu cự bằng 2.

Suy ra 2b2c=2

⇔b=c2

⇔a2−c2=c2

⇔ a2 – c2 = 2c2

⇔ a2 = 3c2.

Lại có tổng bình phương độ dài trục lớn và tiêu cự bằng 64.

Ta suy ra (2a)2 + (2c)2 = 64.

⇔ 4a2 + 4c2 = 64.

⇔ a2 + c2 = 16.

⇔ 3c2 + c2 = 16.

⇔ 4c2 = 16.

⇔ c2 = 4.

⇔ c = 2 (vì c > 0).

Với c = 2, ta có:

• a2 = 3c2 = 3.22 = 12.

•b = c2=22.

Suy ra b2 = 8.

Vậy phương trình elip cần tìm là: x212+y28=1.

Do đó ta chọn phương án A.

Câu 4. Cho elip (E): x225+y29=1. Trong các khẳng định sau, khẳng định nào sai?

A. (E) có các tiêu điểm F1(–4; 0) và F2(4; 0);

B. (E) có tỉ số ca=45;

C. (E) có đỉnh A1(–5; 0);

D. (E) có độ dài trục nhỏ bằng 3.

Hướng dẫn giải

Đáp án đúng là: D

•Phương trình elip (E) có dạng: x2a2+y2b2=1, với a2 = 25, b2 = 9.

Ta suy ra a = 5, b = 3 (vì a, b > 0).

Ta có b = a2−c2

⇔ b2 = a2 – c2

⇔ c2 = a2 – b2 = 25 – 9 = 16.

⇔ c = 4.

Vậy các tiêu điểm của elip (E) là: F1(–4; 0), F2(4; 0).

Do đó phương án A đúng.

• Ta có tỉ số ca=45.

Do đó phương án B đúng.

•Đỉnh A1(–a; 0).

Suy ra A1(–5; 0).

Do đó phương án C đúng.

• Độ dài trục nhỏ là 2b = 2.3 = 6 ≠ 3.

Do đó phương án D sai.

Vậy ta chọn phương án D.

Câu 5. Hypebol có độ dài trục thực gấp đôi độ dài trục ảo và có tiêu cự bằng 415. Phương trình chính tắc của hypebol là:

A. x248−y212=1;

B. x212−y248=1;

C. x248+y212=1;

D. x248+y212=1.

Hướng dẫn giải

Đáp án đúng là: A

Theo đề, ta có độ dài trục thực gấp đôi độ dài trục ảo

Ta suy ra 2a = 2.2b.

Do đó a = 2b.

Hypebol có tiêu cự bằng 415.

Ta suy ra 2c=415.

Do đó c=215.

⇔a2+b2=215

⇔ 4b2 + b2 = 60.

⇔ 5b2 = 60.

⇔ b2 = 12.

⇔b=23.

Với b=23, ta có: a=2b=43.

Suy ra a2 = 48.

Vậy ta có phương trình chính tắc của hypebol là:

x248−y212=1.

Do đó ta chọn phương án A.

Câu 6. Trong các phương trình sau, phương trình nào là phương trình chính tắc của đường parabol?

A. x28+y224=1;

B. y2 = 2x;

C. x264−y249=1;

D. x2 = 21y.

Hướng dẫn giải

Đáp án đúng là: B

Phương trình parabol có dạng: y2 = 2px.

Ta thấy chỉ có phương trình của đáp án B có dạng phương trình parabol trên.

Vậy ta chọn phương án B.

Câu 7. Cho elip (E): x2169+y2144=1. Nếu điểm M nằm trên (E) có hoành độ bằng –13 thì độ dài MF1 và MF2 lần lượt là:

A. 10 và 6;

B. 8 và 18;

C. 13±5;

D. 13±10.

Hướng dẫn giải

Đáp án đúng là: B

Phương trình elip (E) có dạng: x2a2+y2b2=1, với a = 13, b = 12.

Ta có c=a2−b2=169−144=5.

Khi đó F1(–5; 0) và F2(5; 0).

Với M(xM; yM) ta có:

F1M→=xM+5;yM nên F1M=xM+52+yM2

F1M=xM+52+144.1−xM2169

F1M=169+10xM+25169xM2

F1M=13+513xM2

F1M=13+513xM (do F1M > 0).

Tương tự ta có F2M=13−513xM

Mà theo bài xM = –13 nên ta có:

• MF1 = 13+513.−13=8.

• MF2 = 13−513.−13=18.

Do đó ta chọn phương án B.

Câu 8. Cho hypebol (H): x236−y29=1. Tỉ số giữa độ dài trục ảo và độ dài trục thực bằng:

A. 2;

B. 12;

C. 52;

D. 255.

Hướng dẫn giải

Đáp án đúng là: B

(H): x236−y29=1.

Ta có a = 6, b = 3.

Suy ra:

⦁ Độ dài trục ảo là: 2.3 = 6;

⦁ Độ dài trục thực là: 2.6 = 12.

Khi đó tỉ số giữa độ dài trục ảo và độ dài trục thực 2b2a=612=12.

Vậy ta chọn phương án B.

Câu 9. Cho điểm A(3; 4) thuộc parabol (P). Phương trình chính tắc của parabol (P) là:

A. y2=316x;

B. y2=163x;

C. y2=83x;

D. y2=23x.

Hướng dẫn giải

Đáp án đúng là: B

Phương trình chính tắc của parabol (P) có dạng: y2 = 2px.

Ta có A(3; 4) ∈ (P).

Suy ra 42 = 2.p.3

Do đó 16 = 6p

Khi đó ta có p=83 suy ra 2p = 163

Vậy phương trình chính tắc của parabol (P): y2=163x.

Do đó ta chọn phương án B.

Câu 10. Cho hypebol (H): x24−y24=1. Tỉ số giữa tiêu cự và độ dài trục thực bằng:

A. 1;

B. 22;

C. 24;

D. 2.

Hướng dẫn giải

Đáp án đúng là: D

(H): x24−y24=1 nênta có a = b = 2.

Suy ra c=a2+b2=4+4=22.

Khi đó ta có:

⦁ Tiêu cự là: 2c = 2.22=42;

⦁ Độ dài trục thực là: 2a = 2.2 = 4.

Khi đó 2c2a=424=2.

Vậy ta chọn phương án D.

Câu 11. Cho điểm M(5; 8) nằm trên parabol (P): y2=645x. Độ dài FM bằng:

A. 4110;

B. 415;

C. 515;

D. 575.

Hướng dẫn giải

Đáp án đúng là: B

Ta có 2p=645.

Suy ra p=325.

Do đó p2=165

Khi đó ta có tiêu điểm F165;0.

Với F165;0 và M(5; 8) ta có FM→=95;8.

Suy ra FM=952+82=415.

Vậy ta chọn phương án B.

Câu 12. Cho parabol (P) có đường chuẩn là đường thẳng ∆: x + 5 = 0. Điểm M thuộc (P) sao cho khoảng cách từ M đến tiêu điểm của parabol (P) bằng 6. Tọa độ điểm M là:

A. M1;−25; M1;−25 ;

B. M1;25;

C. M−1;−25;

D. M−1;25; M−1;−25 .

Hướng dẫn giải

Đáp án đúng là: A

Phương trình đường chuẩn ∆: x + 5 = 0

Do đó ta có p2=5.

Suy ra p = 10.

Từ đó ta thu được phương trình parabol (P): y2 = 20x.

Tiêu điểm F của (P) là F(5; 0).

Giả sử điểm M(xM; yM) là điểm thuộc (P).

Khi đó y2M = 20xM

Với F(5; 0) và M(xM; yM) ta có FM→=xM−5;yM

⇒ FM=xM−52+yM2

FM=xM2−10xM+25+20xM

FM=xM2+10xM+25

FM=xM+52=xM+5

Theo đề, ta có FM = 6.

⇔ xM + 5 = 6

⇔ xM = 1.

Với xM = 1, ta có y2M = 20.1 = 20.

Suy ra yM=25 hoặc yM=−25

Vậy M1;25 và M1;−25 thỏa mãn yêu cầu bài toán.

Do đó ta chọn phương án A.

Câu 13. Bác An dự định xây một cái ao hình elip ở giữa khu vườn. Biết trục lớn có độ dài bằng 4 m, độ dài trục nhỏ bằng 2 m. Gọi F1, F2 là các tiêu điểm của elip. Khi đó độ dài F1F2 bằng:

A. 23;

B. 3;

C. 5;

D. 25.

Hướng dẫn giải

Đáp án đúng là: A

Ta có độ dài trục lớn bằng 4 m. Suy ra 2a = 4.

Khi đó a = 2.

Lại có độ dài trục nhỏ bằng 2m. Suy ra 2b = 2.

Khi đó b = 1.

Ta có c2 = a2 – b2 = 22 – 12 = 3.

Suy ra c=3.

Vì vậy F1F2 = 2c = 23.

Vậy ta chọn phương án A.

Câu 14.Một tòa tháp có mặt cắt hình hypebol có phương trình x236−y249=1. Biết khoảng cách từ nóc tháp đến tâm đối xứng O của hypebol bằng khoảng cách từ tâm đối xứng O đến đáy tháp. Tòa tháp có chiều cao 50 m. Bán kính đáy của tháp bằng:

A. 43,28 m;

B. 22,25 m;

C. 28,31 m;

D. 57,91 m.

Hướng dẫn giải

Đáp án đúng là: B

15 Bài tập Ba đường conic trong mặt phẳng toạ độ (có đáp án) | Chân trời sáng tạo Trắc nghiệm Toán 10

Gọi r là bán kính đáy của tháp (r > 0).

Do tính đối xứng của hypebol nên ta có hai bán kính của nóc và đáy tháp đều bằng nhau.

Chọn điểm M(r; –25) nằm trên hypebol.

Ta suy ra r236−−25249=1.

⇔r236=1+−25249=67449.

⇔r2=67449.36=2426449.

Suy ra r=66747≈22,25 (m).

Vậy bán kính đáy của tháp bằng khoảng 22,25 m.

Do đó ta chọn phương án B.

Câu 15. Một anten gương đơn hình parabol có phương trình y2 = 20x. Ống thu của anten được đặt tại tiêu điểm của nó. Ta sẽ đặt ống thu tại điểm có tọa độ là:

A. (0; 10);

B. (0 ; 5);

C. (10; 0);

D. (5; 0).

Hướng dẫn giải

Đáp án đúng là: D

Phương trình parabol có dạng y2 = 2px, với p = 10.

Suy ra p2=102=5.

Khi đó tọa độ tiêu điểm F(5; 0).

Vậy ta sẽ đặt ống thu tại điểm có tọa độ (5; 0).

Do đó ta chọn phương án D.

Xem thêm các bài trắc nghiệm Toán 10 Chân trời sáng tạo hay, chi tiết khác:

Trắc nghiệm Toán 10 Bài 3: Đường tròn trong mặt phẳng toạ độ

Trắc nghiệm Toán 10 Bài 4: Ba đường conic trong mặt phẳng toạ độ

Trắc nghiệm Ôn tập chương 9

Trắc nghiệm Bài 1. Không gian mẫu và biến cố

Trắc nghiệm Bài 2. Xác suất của biến cố

Trắc nghiệm Ôn tập chương 10

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giáo án Toán 8 (Kết nối tri thức 2023): Luyện tập chung trang 106

Next post

Bài giảng điện tử Ước chung và ước chung lớn nhất | Cánh diều Giáo án PPT Toán 6

Bài liên quan:

20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10

Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10

Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới

Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10

Trắc nghiệm Toán 10 Kết nối tri thức có đáp án

Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)

Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10

Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  2. Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  3. Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới
  4. Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10
  5. Trắc nghiệm Toán 10 Kết nối tri thức có đáp án
  6. Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)
  7. Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10
  8. Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề
  9. Giáo án Toán 10 Kết nối tri thức (cả năm) mới nhất 2023
  10. Chuyên đề Toán 10 Kết nối tri thức | Giải bài tập Chuyên đề học tập Toán 10 hay, chi tiết
  11. Sách bài tập Toán 10 Kết nối tri thức | Giải SBT Toán 10 | Giải sách bài tập Toán 10 Tập 1, Tập 2 hay nhất | SBT Toán 10 Kết nối tri thức | SBT Toán 10 KNTT
  12. Tổng hợp Lý thuyết Toán lớp 10 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 10 | Tổng hợp kiến thức Toán 10 chương trình mới
  13. Giải sgk Toán 10 Kết nối tri thức | Giải Toán 10 | Giải Toán lớp 10 | Giải bài tập Toán 10 hay nhất | Giải Toán 10 Tập 1, Tập 2 Kết nối tri thức
  14. Sách bài tập Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  15. Giải SGK Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  16. 20 câu Trắc nghiệm Tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  17. Lý thuyết Tập hợp và các phép toán trên tập hợp (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  18. Bài giảng điện tử Tập hợp và các phép toán trên tập hợp | Kết nối tri thức Giáo án PPT Toán 10
  19. Giáo án Toán 10 Bài 2 (Kết nối tri thức 2023): Tập hợp và các phép toán trên tập hợp
  20. Sách bài tập Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  21. Giải SGK Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  22. 30 câu Trắc nghiệm Chương 1: Mệnh đề và tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  23. Lý thuyết Toán 10 Chương 1 (Kết nối tri thức 2023): Mệnh đề và Tập hợp hay, chi tiết
  24. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 1
  25. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  26. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  27. 20 câu Trắc nghiệm Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  28. Lý thuyết Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  29. Bài giảng điện tử Bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  30. Giáo án Toán 10 Bài 3 (Kết nối tri thức 2023): Bất phương trình bậc nhất hai ẩn
  31. Sách bài tập Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  32. Giải SGK Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  33. Lý thuyết Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  34. Bài giảng điện tử Hệ bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  35. Giáo án Toán 10 Bài 4 (Kết nối tri thức 2023): Hệ bất phương trình bậc nhất hai ẩn
  36. 20 câu Trắc nghiệm Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  37. Sách bài tập Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  38. Giải SGK Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  39. Lý thuyết Toán 10 Chương 2 (Kết nối tri thức 2023): Bất phương trình và hệ phương trình bậc nhất hai ẩn hay, chi tiết
  40. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 2
  41. 30 câu Trắc nghiệm Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  42. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  43. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  44. Lý thuyết Giá trị lượng giác của một góc từ 0 đến 180 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  45. Bài giảng điện tử Giá trị lượng giác của một góc từ 0 độ đến 180 độ | Kết nối tri thức Giáo án PPT Toán 10
  46. Giáo án Toán 10 Bài 5 (Kết nối tri thức 2023): Giá trị lượng giác của một góc từ 0 độ đến 180 độ
  47. 20 câu Trắc nghiệm Giá trị lượng giác của 1 góc từ 0° đến 180° (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  48. Sách bài tập Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0° đến 180°
  49. Giải SGK Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0 đến 180
  50. Lý thuyết Hệ thức lượng trong tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  51. Bài giảng điện tử Hệ thức lượng trong tam giác | Kết nối tri thức Giáo án PPT Toán 10
  52. Giáo án Toán 10 Bài 6 (Kết nối tri thức 2023): Hệ thức lượng trong tam giác

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán