Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 10

20 câu Trắc nghiệm Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (Cánh diều 2023) có đáp án – Toán lớp 10

By admin 17/10/2023 0

Trắc nghiệm Toán 10 Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng

Câu 1. Tính góc tạo bởi giữa hai đường thẳng: d1: 2x – y – 3 = 0 và d2: x – 3y + 8 = 0

A. 30o.

B. 45o.

C. 60o.

D. 135o.

Hướng dẫn giải

Đáp án đúng là: B

Ta có:

15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10 với n→1; n→2 lần lượt là các vectơ pháp tuyến của đường thẳng d1; d2.

Áp dụng công thức góc giữa hai đường thẳng, ta có:

15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10

Câu 2. Tìm giá trị âm của m để góc tạo bởi giữa hai đường thẳng d1: 7x – 3y + 2 = 0 và d2: 2x + 5my +1 = 0 bằng 45°.

A. – 1;

B. 425;

C. −425;

D. 1.

Hướng dẫn giải

Đáp án đúng là: A

Ta có:

15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10 với n→1; n→2 lần lượt là vectơ pháp tuyến của đường thẳng d1; d2.

Áp dụng công thức góc giữa hai đường thẳng:

15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10

⇔ 2(196 – 420m + 225m2) = 58(4 + 25m2)

⇔ 392 – 840m + 450m2 = 232 + 1450m2

⇔ 1000m2 + 840m – 160 = 0

⇔ m = 425 hoặc m = – 1

Vậy giá trị âm của m thỏa mãn điều kiện bài toán là m = – 1.

Câu 3. Tính góc tạo bởi giữa hai đường thẳng:

d1:2x+23y+4=0 và d2: y – 4 = 0

A. 30o;

B. 45o;

C. 60o;

D. 90o.

Hướng dẫn giải

Đáp án đúng là: A

Ta có:

15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10 với n→1; n→2 lần lượt là vectơ pháp tuyến của đường thẳng d1; d2.

Áp dụng công thức góc giữa hai đường thẳng ta có:

15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10

Câu 4. Tính góc tạo bởi giữa hai đường thẳng: d1:x+3y+6=0 và d2: x + 1 = 0

A.30o;

B. 45o;

C. 60o;

D. 90o.

Hướng dẫn giải

Đáp án đúng là: C

Ta có:

15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10 với n→1; n→2 lần lượt là vectơ pháp tuyến của đường thẳng d1; d2.

Áp dụng công thức góc giữa hai đường thẳng ta có:

15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10

Câu 5.Góc tạo bởi hai đường thẳng nào dưới đây bằng 90°

A. d1: 6x – 5y + 4 = 0 và 15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10

B. 15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10

C. d1: x – 2y + 4 = 0 và d2: y + 1 = 0;

D. 15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10 và d2: 3x + 2y – 4 = 0.

Hướng dẫn giải

Đáp án đúng là: A

+) Đường thẳng d1: 6x – 5y + 4 = 0 có VTPT là n1→=6;−5

Đường thẳng15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10 có VTCP là u2→=−6;5 nên VTCP là n2→=5;6

Ta có: n1→.n2→=5.6+6.−5=0. Do đó d1 ⊥ d2 hay góc giữa hai đường thẳng bằng 90°.

+) Đường thẳng 15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10có VTCP là u1→=−6;5

Đường thẳng 15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10 có VTCP là u2→=−6;5

Ta có: −65=−65 nên u1→ và u2→ cùng phương. Do đó hai đường thẳng d1 song song hoặc trùng d2. Do đó góc giữa hai đường thẳng bằng 0°.

+) Đường thẳng d1: x – 2y + 4 = 0 có VTPT là n1→=1;−2

Đường thẳng d2: y + 1 = 0 có VTPT là n2→=0;1

Áp dụng công thức tính góc giữa hai đường thẳng ta được:

15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10

⇒ (d1 ; d2) ≈ 26°34’.

+) Đường thẳng 15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10có VTCP là u1→=−3;2 nên VTCP là n1→=2;3

Đường thẳng d2: 3x + 2y – 4 = 0 có VTPT là n2→=3;2

Áp dụng công thức tính góc giữa hai đường thẳng ta được:

15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10

⇒ (d1 ; d2) ≈ 22°37’.

Câu 6. Xét vị trí tương đối của hai đường thẳng:

d1: x – 2y + 2 = 0 và d2: – 3x + 6y – 10 = 0

A. Trùng nhau;

B. Song song;

C. Vuông góc với nhau;

D. Cắt nhau nhưng không vuông góc nhau.

Hướng dẫn giải

Đáp án đúng là: B

Xét hệ phương trình: 15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10

Giải hệ phương trình: 15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10–4 = 0 (vô lý)

Vậy suy ra hệ phương trình trên vô nghiệm

⇒Hai đường thẳng song song.

Câu 7. Xét vị trí tương đối của hai đường thẳng:

d1: 3x – 2y – 3 = 0 và d2: 6x – 2y – 8 = 0

A. Trùng nhau;

B. Song song;

C. Vuông góc với nhau;

D. Cắt nhau nhưng không vuông góc nhau.

Hướng dẫn giải

Đáp án đúng là: D

Ta có: d1: 3x – 2y – 3 = 0 có VTPT là n1→ = (3; – 2) và d2: 6x – 2y – 8 = 0 có VTPT là n2→ = (6; – 2).

Ta có: 36≠−2−2 nên hai vectơ n1→ và n2→ không cùng phương.

Do đó đường thẳng d1 và d2 cắt nhau.

Ta lại có n1→.n2→=3.6+−2.−2=22≠0 nên d1 và d2 không vuông góc với nhau.

Vậy hai đường thẳng cắt nhau nhưng không vuông góc.

Câu 8. Xét vị trí tương đối của hai đường thẳng d1:x3−y4=1 và d2: 3x + 4y – 8 = 0.

A. Trùng nhau;

B. Song song;

C. Vuông góc với nhau;

D. Cắt nhau nhưng không vuông góc nhau.

Hướng dẫn giải

Đáp án đúng là: C

Phương trình d1 có vectơ pháp tuyến n→1=13;−14

Phương trình d2 có vectơ pháp tuyến n→2=3;4

Ta có: 133≠−144n→1;n→2 không cùng phương và n→1⋅n→2 = 13.3 + −14.4 = 0. Như vậy hai vectơ pháp tuyến của hai đường thẳng vuông góc với nhau, suy ra hai đường thẳng vuông góc với nhau.

Câu 9.Tìm m để hai đường thẳng d1 và d2 vuông góc với nhau:

15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10

A. m = −2+2;

B. m = −2−2;

C. m = 2;

D. không tồn tại m.

Hướng dẫn giải

Đáp án đúng là: D

Đường thẳng 15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10 có VTCP là u1→=m;−2;

Đường thẳng 15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10 có VTCP là u2→=−2;4+m.

Để hai đường thẳng d1 và d2 vuông góc với nhau thì u1→ và u2→ không cùng phương và 15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10

15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10

Vậy không tồn tại m thỏa mãn yêu cầu bài toán.

Câu 10.Cho đường thẳng 15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10. Đường thẳng nào sau đây trùng với đường thẳng d.

15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10

Hướng dẫn giải

Đáp án đúng là: A

Đường thẳng 15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10 có VTCP là ud→ = (4; – 4) = 4.(1; – 1). Suy ra VTCP của đường thẳng d cũng là vectơ có tọa độ (1; – 1).

Với t = 1 thì 15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10. Do đó đường thẳng d đi qua điểm có tọa độ (1; – 2).

Vì vậy đường thẳng d trùng với đường thẳng 15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10

Câu 11. Trong mặt phẳng với hệ tọa độ Oxy, cho điểm Mx0;y0 và đường thẳng ∆: ax + by + c = 0. Khoảng cách từ điểm M đến ∆ được tính bằng công thức:

15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10

Hướng dẫn giải

Đáp án đúng là: C

15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10

Câu 12. Khoảng cách từ điểm M( –1; 1) đến đường thẳng ∆: 3x – 4y – 3 = 0 bằng:

A. 25;

B. 2;

C. 45;

D. 425.

Hướng dẫn giải

Đáp án đúng là: B

Áp dụng công thức tính khoảng cách từ một điểm đến đường thẳng ta có:

15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10

Câu 13. Khoảng cách từ giao điểm của đường thẳng x – 3y + 4 = 0 và 2x + 3y – 1 = 0 đến đường thẳng ∆: 3x + y + 3 = 0 bằng:

A. 210;

B. 3105;

C. 105;

D. 2.

Hướng dẫn giải

Đáp án đúng là: C

+) Giao điểm của hai đường thẳng:

Ta có: 15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10, vậy điểm A (–1; 1) là giao điểm của hai đường thẳng

+) Khoảng cách từ A đến ∆: 3x + y + 3 = 0:

15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10

Câu 14. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(1; 2);B(0; 3) và C(4; 0). Chiều cao của tam giác kẻ từ đỉnh A bằng:

A. 15;

B. 3;

C. 125;

D. 35.

Hướng dẫn giải

Đáp án đúng là: A

+) Viết phương trình đường thẳng qua B, C

Ta có: B (0; 3); C (4; 0)⇒BC→= (4; – 3) là vectơ chỉ phương của đường thẳng BC.

Ta chọn n→(3; 4) là vectơ pháp tuyến của đường thẳng BC (n→⊥BC→), suy ra phương trình đường thẳng BC có phương trình: 3.(x – 0) + 4(y – 3) = 0 hay 3x + 4y – 12 = 0

+) Độ dài đường cao kẻ từ A

Độ dài đường cao kẻ từ đỉnh A của tam giác chính là khoảng cách từ điểm A đến đường thẳng BC:

15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10

Câu 15. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(3; -4);B(1; 5) và C(3; 1). Tính diện tích tam giác ABC.

A. 10;

B. 5;

C. 26;

D. 25.

Hướng dẫn giải

Đáp án đúng là: B

+) Viết phương trình đường thẳng BC; độ dài BC

– Ta có: B(1; 5); C(3; 1) ⇒BC→= (2; – 4) là vectơ chỉ phương của đường thẳng BC

Ta chọn n→= (2; 1) là vectơ pháp tuyến của đường thẳng BC (n→⊥BC→), ta viết được phương trình đường thẳng qua BC như sau: 2.(x – 1) + 1.(y – 5) = 0 hay

2x + y – 7 = 0

– Độ dài BC: BC = (3−1)2+(1−5)2=20=25

+) Tính độ dài đường cao kẻ từ A:

Độ dài đường cao kẻ từ A chính là khoảng cách từ A đến phương trình đường thẳng qua BC, ta có:

15 Bài tập Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (có đáp án) | Cánh diều Trắc nghiệm Toán 10

+) Diện tích tam giác ABC:

SABC=12.hA.BC = 12.5.25 = 5.

Xem thêm các bài trắc nghiệm Toán 10 Cánh diều hay, chi tiết khác:

Trắc nghiệm Toán 10 Bài 3: Phương trình đường thẳng

Trắc nghiệm Toán 10 Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng

Trắc nghiệm Toán 10 Bài 5: Phương trình đường tròn

Trắc nghiệm Toán 10 Bài 6: Ba đường conic

Trắc nghiệm Ôn tập chương 7

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải SGK Toán 8 (Cánh diều): Bài tập cuối chương 3

Next post

Giáo án Toán lớp 1 Cộng bằng cách đếm thêm (2 tiết) | Chân trời sáng tạo

Bài liên quan:

20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10

Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10

Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới

Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10

Trắc nghiệm Toán 10 Kết nối tri thức có đáp án

Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)

Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10

Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  2. Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  3. Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới
  4. Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10
  5. Trắc nghiệm Toán 10 Kết nối tri thức có đáp án
  6. Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)
  7. Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10
  8. Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề
  9. Giáo án Toán 10 Kết nối tri thức (cả năm) mới nhất 2023
  10. Chuyên đề Toán 10 Kết nối tri thức | Giải bài tập Chuyên đề học tập Toán 10 hay, chi tiết
  11. Sách bài tập Toán 10 Kết nối tri thức | Giải SBT Toán 10 | Giải sách bài tập Toán 10 Tập 1, Tập 2 hay nhất | SBT Toán 10 Kết nối tri thức | SBT Toán 10 KNTT
  12. Tổng hợp Lý thuyết Toán lớp 10 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 10 | Tổng hợp kiến thức Toán 10 chương trình mới
  13. Giải sgk Toán 10 Kết nối tri thức | Giải Toán 10 | Giải Toán lớp 10 | Giải bài tập Toán 10 hay nhất | Giải Toán 10 Tập 1, Tập 2 Kết nối tri thức
  14. Sách bài tập Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  15. Giải SGK Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  16. 20 câu Trắc nghiệm Tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  17. Lý thuyết Tập hợp và các phép toán trên tập hợp (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  18. Bài giảng điện tử Tập hợp và các phép toán trên tập hợp | Kết nối tri thức Giáo án PPT Toán 10
  19. Giáo án Toán 10 Bài 2 (Kết nối tri thức 2023): Tập hợp và các phép toán trên tập hợp
  20. Sách bài tập Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  21. Giải SGK Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  22. 30 câu Trắc nghiệm Chương 1: Mệnh đề và tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  23. Lý thuyết Toán 10 Chương 1 (Kết nối tri thức 2023): Mệnh đề và Tập hợp hay, chi tiết
  24. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 1
  25. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  26. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  27. 20 câu Trắc nghiệm Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  28. Lý thuyết Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  29. Bài giảng điện tử Bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  30. Giáo án Toán 10 Bài 3 (Kết nối tri thức 2023): Bất phương trình bậc nhất hai ẩn
  31. Sách bài tập Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  32. Giải SGK Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  33. Lý thuyết Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  34. Bài giảng điện tử Hệ bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  35. Giáo án Toán 10 Bài 4 (Kết nối tri thức 2023): Hệ bất phương trình bậc nhất hai ẩn
  36. 20 câu Trắc nghiệm Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  37. Sách bài tập Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  38. Giải SGK Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  39. Lý thuyết Toán 10 Chương 2 (Kết nối tri thức 2023): Bất phương trình và hệ phương trình bậc nhất hai ẩn hay, chi tiết
  40. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 2
  41. 30 câu Trắc nghiệm Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  42. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  43. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  44. Lý thuyết Giá trị lượng giác của một góc từ 0 đến 180 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  45. Bài giảng điện tử Giá trị lượng giác của một góc từ 0 độ đến 180 độ | Kết nối tri thức Giáo án PPT Toán 10
  46. Giáo án Toán 10 Bài 5 (Kết nối tri thức 2023): Giá trị lượng giác của một góc từ 0 độ đến 180 độ
  47. 20 câu Trắc nghiệm Giá trị lượng giác của 1 góc từ 0° đến 180° (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  48. Sách bài tập Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0° đến 180°
  49. Giải SGK Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0 đến 180
  50. Lý thuyết Hệ thức lượng trong tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  51. Bài giảng điện tử Hệ thức lượng trong tam giác | Kết nối tri thức Giáo án PPT Toán 10
  52. Giáo án Toán 10 Bài 6 (Kết nối tri thức 2023): Hệ thức lượng trong tam giác

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán