Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 10

Đề cương ôn tập học kỳ 2 trường THPT chuyên Hà Nội – Amsterdam năm 2018 – 2019

By admin 19/10/2023 0

Mời các quý thầy cô và các em học sinh cùng tham khảo và tải về chi tiết tài liệu dưới đây

Đề cương ôn tập học kỳ 2 trường THPT chuyên Hà Nội – Amsterdam năm 2018 – 2019

Phần I – Các kiến thức cần chú ý

I. Đại sôa

1. Bất phương trình

– Bất phương trình và các khái niệm liên quan.

– Bất phương trình và hệ bất phương trình bậc nhất một ẩn

– Dấu nhị thức bậc nhất

– Bất phương trình và hệ bất phương trình bậc nhất hai ẩn.

– Dấu tam thức bậc hai

– Bất phương trình bậc hai

– Một số phương trình và bất phương trình qui về bậc hai

2.Thống kê

– Các khái niệm cơ bản

– Trình bày một mẫu số liệu

– Các số đặc trưng của mẫu số liệu

3. Góc lượng giác và công thức lượng giác

– Góc và cung lượng giác

– Giá trị lượng giác của góc (cung) lượng giác.

– Giá trị lượng giác của góc (cung) lượng giác có liên quan đặc biệt.

– Một số công thức lượng giác.

II. Hình học

1. Đường thẳng

– Khái niệm véc tơ chỉ phương, véc tơ pháp tuyến của đường thẳng.

– Các dạng phương trình tổng quát, phương trình tham số, phương trình chính tắc.

– Công thức tính góc, khoảng cách.

2. Đường tròn

– Phương trình đường tròn biết tâm và bán kính.

– Phương trình tổng quát của đường tròn.

– Phương trình tiếp tuyến của đường tròn

3. Elip

– Phương trình chính tắc của elip

Phần II – Bài tập vận dụng

I. Đại số

A. Bài tập tråc nghiệm

Câu 1. Giá trị của tham số m để hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}}{mx + 9 < 3x + {m^2}}\\{4x + 1 <  – x + 6}\end{array}} \right.\) có nghiệm trên tập số thực là:

A. \(\left[ {\begin{array}{*{20}{l}}{m \ge 3}\\{m \le  – 2}\end{array}} \right.\)

B. \(\left[ {\begin{array}{*{20}{l}}{m > 3}\\{m <  – 2}\end{array}} \right.\)

C. \( – 2 \le {\rm{m}} < 2\)

D. \(0 < {\rm{m}} \le 3\)

Câu 2. Bất phương trình \(\frac{{\sqrt {2 – x}  + 4x – 3}}{x} \ge 2\) có tập nghiệm là:

A. \(( – \infty ;2]\)

B. \([1; + \infty )\)

C. [1 ; 2]

D. \(( – \infty ;0) \cup [1;2]\)

Câu 3. Tập tất cả các giá trị thực của tham số m để \({x^2} + 2mx + 3m – 2 > 0\forall x\) là :

A. [1 ; 2]

B. \((1;2)\)

C. \(( – \infty ;1] \cup [2; + \infty )\)

D. \(( – \infty ;1) \cup (2; + \infty )\)

Câu 4. Tập nghiệm của bất phương trình \(\sqrt {x + 4}  \ge x – 2\) là :

A. [2 ; 5]

B. \(( – \infty ;2]\)

C. \([ – 4;5]\)

D. \([ – 4;2]\)

Câu 5. Số nghiệm nguyên dương của bất phương trình \(\frac{{x + 3}}{{2x}} + \frac{{2x}}{{x + 3}} \le 2\) là:

A. 0

B. 1

C. 2

D. Đáp số khác

Câu 6. Giá trị tham số m để hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}}{{x^2} – 3x – 10 \le 0}\\{mx + m – 2 > 0}\end{array}} \right.\) có nghiệm trên tập số thực là:

A. \(m \in ( – \infty ; – 2) \cup \left( {\frac{1}{3}; + \infty } \right)\)

C. \(m \in ( – \infty ; – 2) \cup (0; + \infty )\)

B. \(m \in ( – \infty ;0) \cup \left( {\frac{1}{3}; + \infty } \right)\)

D. \(m \in \left( {0;\frac{1}{3}} \right)\)

Câu 7. Cho \(4\pi  < x < 5,5\pi \) và \(\sin \left( {x + \frac{\pi }{2}} \right) = 0,8\). Khi đó biểu thức \(\sin \left( {x – \frac{{3\pi }}{2}} \right) + \cos \left( {x + \frac{{3\pi }}{2}} \right)\) bằng:

A. 1,4

B. 0,2

C. -1.4

D. – 0,2

Câu 8. Kết quả rút gọn biểu thức \({\rm{A}} = \frac{{1 – \cos \alpha }}{{\sin \alpha }} \cdot \left[ {\frac{{{{(1 + \cos \alpha )}^2}}}{{{{\sin }^2}\alpha }} – 1} \right]\) là:

A. \(\tan \alpha \)

B. \(2\tan \alpha \)

C. \(\cot \alpha \)

D. \(2\cot \alpha \)

Câu 9. Biết \(\cos \alpha  =  – \frac{8}{{17}}\) và 90°<α<180°. Tính tan \(\alpha \)

A. -1

B. \( – \frac{8}{{15}}\)

C. \( – \frac{{17}}{8}\)

D. \( – \frac{{15}}{8}\)

Câu 10. Biết \(\cos \alpha  =  – \frac{1}{3}\). Khi đó, giá trị của biểu thức \({\rm{A}} = \frac{{5\cot \alpha  + 4\tan \alpha }}{{5\cot \alpha  – 4\tan \alpha }}\) là:

A. \( – \frac{{37}}{{27}}\)

B. \(\frac{{37}}{{27}}\)

C. \(\frac{{15}}{{27}}\)

D. \(\frac{{19}}{{27}}\)

Câu 11. Cho \(\tan \alpha  = 2\) với \(\alpha  \in \left( {\pi ;\frac{{3\pi }}{2}} \right)\). Khi đó giá trị của \(\cos (3\alpha  + 2017\pi )\) là

A. \(\frac{{11}}{{5\sqrt 5 }}\)

B. \( – \frac{{11}}{{5\sqrt 5 }}\)

C. \( – \frac{{71}}{{125}}\)

D. \(\frac{{71}}{{125}}\)

Câu 12. Cho \(\sin \alpha  =  – \frac{1}{3}\) với \(\alpha  \in \left( {\frac{{3\pi }}{2};2\pi } \right)\). Khi đó giá trị của \(\sin 2\alpha \) là

A. \(\frac{{4\sqrt 2 }}{9}\)

B. \( – \frac{2}{3}\)

C. \(\frac{{ – 4\sqrt 2 }}{9}\)

D. \(\frac{2}{3}\)

B. Bài tập tự luận

Bài 1. Giải các bất phương trình sau trên tập số thực:

a). \({x^2} – 3x + 1 \ge 0\)

b). \(\frac{{(1 – x)\left( {{x^2} – 5x + 6} \right)}}{{9 + x}} < 0\)

c). \(\left( {{x^2} – 4x + 3} \right)\frac{{2x – 1}}{{x + 2}} \le 0\)

d). \(\left| {{x^2} + x – 2} \right| + 3{x^2} – 3 > 0\)

e). \(|x – 3| + |x – 4| < x + 4\)

Bài 2. Giải các phương trình sau trên tập số thực:

a). \(\sqrt {3x + 1}  – \sqrt {6 – x}  + 3{x^2} – 14x – 8 = 0\)

b). \(2\sqrt {{\rm{x}} + 2 + 2\sqrt {{\rm{x}} + 1} }  – \sqrt {{\rm{x}} + 1}  = 4\)

c). \(\sqrt {x – 2}  + \sqrt {4 – x}  = {x^2} – 6x + 11\)

Bài 3. Giải các bất phương trình sau trên tập số thực:

a). \(\left( {{x^2} – 4x} \right) \cdot \sqrt {2{x^2} – 3x – 2}  \ge 0\)

b). \(\frac{{\sqrt {6 + x – {x^2}} }}{{2x + 5}} \ge \frac{{\sqrt {6 + x – {x^2}} }}{{x + 4}}\)

c). \(\sqrt {5x – 1}  – \sqrt {x – 1}  > \sqrt {2x – 4} \)

d) \( \cdot \sqrt {{x^2} – 10x + 25}  < {x^2} – 4\)

e). \(\frac{{\sqrt {2 – x}  + 4x – 3}}{x} \ge 2\)

f). \(\sqrt {{x^2} + 3x – 4}  + \sqrt {{x^2} – x}  \ge \sqrt {{x^2} + x – 2} \)

Bài 4. Cho hàm số \({\rm{f}}({\rm{x}}) = (4\;{\rm{m}} – 3){{\rm{x}}^2} – 3(\;{\rm{m}} + 1){\rm{x}} + 2(\;{\rm{m}} + 1)\) với \({\rm{m}}\) là tham số.

a) Tìm các giá trị thực của tham số \({\rm{m}}\) để \({\rm{f}}({\rm{x}}) < 0\) với mọi giá trị thực của \({\rm{x}}\).

b) Tìm các giá trị thực của tham số \({\rm{m}}\) để phương trình \({\rm{f}}({\rm{x}}) = 0\) có hai nghiệm trái dấu.

Bài 5 .

a) Tìm các giá trị thực của tham số m  sao cho bất phương trình \(({\rm{m}} + 3){\rm{x}} – 2\;{\rm{m}} + 5 > 0\) có tập nghiệm là R.

b) Tìm các giá trị thực của tham số m để hàm số \({\rm{y}} = \sqrt {{{\rm{x}}^2} – (3\;{\rm{m}} + 1){\rm{x}} + {\rm{m}}} {\rm{y}}\) xác định với mọi \({\rm{x}} \in {\rm{R}}\).

c) Tìm các giá trị của tham số m để bất phương trình \(\frac{2}{3} \le \frac{{{x^2} – mx + 1}}{{{x^2} – x + 1}} \le \frac{3}{2}\) nghiệm đúng với mọi số thực x.

Bài 6. Tìm các giá trị thực của tham số m để hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}}{x – \frac{1}{2} \ge \frac{x}{4} + 1}\\{{x^2} – 2mx – 2m – 1 \le 0}\end{array}} \right.\) có nghiệm?

Bài 7. Giải các hệ bất phương trình sau trên tập số thực :

a). \(\left\{ {\begin{array}{*{20}{l}}{{x^2} – 5x + 2 < 0}\\{{x^2} + 8x + 1 \le 0}\end{array}} \right.\)

b). \(\left\{ {\begin{array}{*{20}{l}}{\frac{{\sqrt {17 – 15x – 2{x^2}} }}{{x + 3}} > 0}\\{\frac{{5x – {x^2} + 9}}{{{x^2} – x + 1}} > 1}\end{array}} \right.\)

Bài 8 .

a) Cho \(\sin \alpha  =  – \frac{3}{5}\)với \( – \frac{\pi }{2} < \alpha  < 0\). Tìm các giá trị \(\cos \alpha \), \(\tan \alpha \)

b). Chứng minh rằng giá trị của biểu thức \(2{\left( {{{\sin }^4}x + {{\cos }^4}x + {{\sin }^2}x \cdot {{\cos }^2}x} \right)^2} – \left( {{{\sin }^8}x + {{\cos }^8}x} \right)\) không phụ thuộc vào x.

Bài 9 .

a) Chứng minh rằng: \[\sin {200^ \circ } \cdot \sin {310^ \circ } + \cos {340^ \circ } \cdot \cos {50^ \circ } = \sqrt 3 /2\]

b) Biến đổi thành tích biểu thức \({\rm{B}} = 1 + \cos a + \cos 2{\rm{a}} + \cos 3{\rm{a}}{\rm{. }}\)

c) Rút gọn biểu thức:\({\rm{C}} = {\sin ^2}{\rm{a}}\left( {1 + \frac{1}{{\sin {\rm{a}}}} + \cot {\rm{a}}} \right)\left( {1 – \frac{1}{{\sin {\rm{a}}}} + \cot {\rm{a}}} \right)\)

Bài 10 .

a) Tính giá trị biểu thức: \[{\rm{A}} = \cos {20^ \circ } \cdot \cos {40^ \circ } \cdot \cos {60^ \circ } \cdot \cos {80^ \circ }{\rm{\;v\`a \;B}} = \sin {20^ \circ } \cdot \sin {40^ \circ } \cdot \sin {80^ \circ }\]

b). Chứng minh rằng: \(\cos a \cdot \sin (b – c) + \cos b \cdot \sin (c – a) + {\mathop{\rm cosc}\nolimits}  \cdot \sin (a – b) = 0\)

c). Chứng minh rằng:

\(\cos (a + b) \cdot \sin (a – b) + \cos (b + c) \cdot \sin (b – c) + \cos (c + a)\sin (c – a) = 0\)

Bài 11. Điểm Toán của 40 em học sinh ở 1 lớp 10 cho bởi công thức sau:

Đề cương ôn tập học kỳ 2 trường THPT chuyên Hà Nội - Amsterdam năm 2018 - 2019 (ảnh 1)

Tính số trung bình, phương sai, độ lệch chuẩn, số trung vị của bảng phân bố trên.

II. Hình học

A. Bài tập trắc nghiệm

Câu 1. Trong mặt phẳng với hệ trục tọa độ Oxy cho hai đường thẳng \({d_1}:x + y – 4 = 0;{{\rm{d}}_2}:\left\{ {\begin{array}{*{20}{l}}{x = 1 – t}\\{y = 5 – 3t}\end{array}} \right.\) và điểm \({\rm{A}}(1; – 2)\). Khi đó, đường thẳng đi qua điểm A và qua giao điểm của \({{\rm{d}}_1},\;{{\rm{d}}_2}\) có dạng

A. \(\left\{ {\begin{array}{*{20}{l}}{x = 1 + t}\\{y =  – 2 + t}\end{array}} \right.\)

B. \(\frac{{x – 2}}{4} = \frac{{y – 2}}{1}\)

C. \(4x – y + 2 = 0\)

D. \(\left\{ {\begin{array}{*{20}{l}}{x = 1 + s}\\{y =  – 2 + 4s}\end{array}} \right.\)

Câu 2. Trong mặt phẳng Oxy cho 3 đường thẳng \({d_1}:x + 2y – 3 = 0;\quad {{\rm{d}}_2}:3x + 2y – 1 = 0;{{\rm{d}}_3}:mx + y + 3 = 0\) (m là tham số) tạo thành tam giác. Khi đó điều kiện của tham số m là :

A. \(m \notin \left\{ {\frac{1}{2};\frac{3}{2};3} \right\}\)

B. \(m \notin \left\{ {\frac{1}{2};\frac{3}{2}} \right\}\)

C. \(m \ne \frac{1}{2}\)

D. Đáp án khác

Câu 3. Trong mặt phẳng với hệ trục tọa độ Oxy, cho các điểm \({\rm{A}}(1;4),{\rm{B}}(0;1),{\rm{C}}(4; – 2)\). Khi đó khoảng cách từ điểm A đến đường thẳng BC bằng

A. 1 (đvđd)

B. 2(đvđd)

C. 3 (đvđd)

D. 4 (đvđd)

Câu 4. Trong mặt phẳng với hệ trục tọa độ Oxy, cho 2 đường thẳng \({d_1}:x + 2y – 5 = 0;{{\rm{d}}_2}:3x + my – 1 = 0\). Điều kiện của tham số m để góc giữa hai đường thẳng trên bằng 45° là :

A. \(m = 1\)

B. \(m = 9\)

C. \(\left[ {\begin{array}{*{20}{l}}{m = 1}\\{m = 9}\end{array}} \right.\)

D. \(\left[ {\begin{array}{*{20}{l}}{m = 1}\\{m =  – 9}\end{array}} \right.\)

Câu 5. Trong mặt phẳng với hệ trục tọa độ Oxy cho điểm A(4;1). Đường thẳng đi qua điểm a cắt hai tia Ox, Oy theo thứ tự tại các điểm M và N. Diện tích tam giác OMN đạt giá trị nhỏ nhất bằng:

A. 3 (đvdt)

B. 4 (đvdt)

C. 5 (đvdt)

D. 6( đvdt)

Câu 6. Trong mặt phẳng tọa độ Oxy phương trình tiếp tuyến của đường tròn \(({\rm{C}}):{{\rm{x}}^2} + {{\rm{y}}^2} – 2{\rm{x}} – 8{\rm{y}} – 8 = 0\) đi qua điểm M(4;0) là:

A. \(3x – y + 12 = 0\)

B. \(3x + 4y – 11 = 0\)

C. \(3x – 4y – 12 = 0\)

D. \(x – 7y + 3 = 0\)

Câu 7. Trong mặt phẳng tọa độ Oxy cho đường tròn (C ) : \({({\rm{x}} – 1)^2} + {({\rm{y}} – 3)^2} = 1\). Viết phương trình đường thẳng qua M ( 2;4) và cắt đường tròn (C ) tại 2 điểm A,B sao cho M là trung điểm đoạn AB ?

A. \(2x + y – 5 = 0\)

B. \(x + y – 6 = 0\)

C. \(x – 2 = 0\)

D. \({\rm{y}} – 1 = 0\)

Câu 8. Trong mặt phẳng tọa độ Oxy cho tam giác ABC có A(2, 3) và trọng tâm G(2;0). Biết điểm B và điểm C lần lượt thuộc hai đường thẳng \(x + y + 5 = 0\) và \(x + 2y – 7 = 0\). Đường tròn tâm C tiếp xúc với đường thẳng BG có bán kính là:

A. 1,6

B. 1,8

C. 2

D. Đáp số khác

Câu 9. Trong mặt phẳng tọa độ Oxy cho hai điểm \(B( – 1;2),C(2; – 1)\). Biết điểm A thuộc đường thẳng \((d):2x + y + 5 = 0\) sao cho chu vi tam giác ABC nhỏ nhất. Khi đó hoành độ của điểm A là:

A. \(x =  – 2\)

B. \(x =  – 35/13\)

C. \(x =  – 33/13\)

D. \(x =  – 30/13\)

Câu 10. Phương trình chính tắc của elip có một đỉnh của hình chữ nhật cơ sở là M(4;3)

A. \(\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1\)

B. \(\frac{{{x^2}}}{{16}} – \frac{{{y^2}}}{9} = 1\)

C. \(\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{4} = 1\)

D. \(\frac{{{x^2}}}{4} + \frac{{{y^2}}}{3} = 1\)

B. Bài tập tự luận

Bài 1. Trong mặt phẳng tọa độ Oxy cho hai đường thẳng \({\Delta _1}:2{\rm{x}} + 3{\rm{y}} – 6 = 0\) và \({\Delta _2}:\left\{ {\begin{array}{*{20}{l}}{{\rm{x}} = 1 + {\rm{t}}}\\{{\rm{y}} = 2 + {\rm{t}}}\end{array}} \right.\).

a) Cho điểm M(2;1) Tìm điểm H thuộc đường thẳng \({\Delta _1}\) sao cho đoạn thẳng MH có độ dài nhỏ nhất.

b) Tìm điểm I thuộc đường thẳng \({\Delta _2}\) sao cho khoảng cách từ điểm I đến đường thẳng bằng \(\sqrt {13} \).

Bài 2. Trong mặt phẳng tọa độ Oxy cho điểm A(3;5) và đường thẳng \(\Delta :2{\rm{x}} – {\rm{y}} + 3 = 0\)

a) Viết phương trình đường tròn tâm A, tiếp xúc với \(\Delta \).

b) Tìm tọa độ của điểm \({{\rm{A}}^\prime }\) đối xứng với A qua \(\Delta \).

c) Viết phương trình đường thẳng \({\Delta ^\prime }\) đi qua A sao cho góc giữa hai đường thẳng \(\Delta \) và \({\Delta ^\prime }\) bằng 60°.

Bài 3 . Trong mặt phẳng tọa độ Oxy cho ba điểm \({\rm{A}}(4;6),{\rm{B}}( – 3;5),{\rm{C}}(1;7)\).

a) Viết phương trình đường tròn (T) đi qua 3 điểm A,B,C. Tìm tọa độ tâm I và tính bán kính của đường tròn (T)

b) Viết phương trình các tiếp tuyến của đường tròn biết tiếp tuyến song song với trục tọa độ.

c) Viết phương trình tiếp tuyến của đường tròn biết tiếp tuyến vuông góc với đường thẳng OI.

d) Viết phương trình các tiếp tuyến của đường tròn tại A và B. Tìm tọa độ giao điểm của hai tiếp tuyến đó.

e) Viết phương trình các tiếp tuyến của đường tròn đi qua điểm E( 2; 8) và tìm góc giữa hai tiếp tuyến đó.

Bài 4. Trong mặt phẳng tọa độ Oxy cho đường tròn ( C) có phương trình \({{\rm{x}}^2} + {{\rm{y}}^2} – 2{\rm{x}} + 4{\rm{y}} – 20 = 0\)

a) Viết phương trình tiếp tuyến của đường tròn ( C)  tại các điểm A( 4; 2) và B( – 3; -5)

b) Viết phương trình tiếp tuyến của đường tròn ( C)  biết tiếp tuyến đi qua điểm M(6;5)

c) Viết phương trình tiếp tuyến chung của đường tròn ( C)  và đường tròn \((C’):{x^2} + {y^2} – 10x + 9 = 0\).

Bài 5. Trong mặt phẳng tọa độ Oxy cho tam giác ABC. Biết \({\rm{A}}( – 1;1),{\rm{B}}(3;2),{\rm{C}}\left( { – \frac{1}{2}; – 1} \right)\)

a) Viết phương trình đường thẳng chứa các cạnh của . Tính độ dài các cạnh và độ lớn các góc của tam giác ABC.

b) Viết phương trình các đường thẳng chứa đường cao, đường trung tuyến và đường phân giác trong của tam giác ABC kẻ từ đỉnh A.

c) Xác định toạ độ của tâm đường tròn ngoại tiếp và tâm đường tròn nội tiếp \(\Delta {\rm{ABC}}\)

Bài 6. Trong mặt phẳng tọa độ Oxy cho \(\Delta {\rm{ABC}}\) vuông tại A. Biết tọa độ đỉnh C( -4;1), đường thẳng chứa phân giác trong góc A của tam giác ABC có phương trình là \({\rm{x}} + {\rm{y}} – 5 = 0\). Viết phương trình đường thẳng BC, biết diện tích  bằng 24 và đỉnh A có hoành độ dương.

Bài 7. Trong mặt phẳng tọa độ Oxy cho  có C(3;5). Biết phương trình các đường thẳng chứa đường cao và đường trung tuyến kẻ từ một đỉnh của tam giác lần lượt là: \(5x + 4y – 1 = 0\) và \(8x + y – 7 = 0\). Viết phương trình các đường thẳng chứa các cạnh của tam giác ABC.

Bài 8. Trong mặt phẳng tọa độ Oxy cho hình chữ nhật ABCD có đỉnh A( 5;1); C( 0;6). Biết một cạnh của hình chữ nhật nằm trên đường thẳng \(({\rm{d}}):{\rm{x}} + 2{\rm{y}} – 12 = 0\). Viết phương trình các đường thẳng chứa các cạnh còn lại của hình chữ nhật ABCD.

Bài 9. Trong mặt phẳng tọa độ Oxy cho hình thoi ABCD có tâm I( 2;1) và AC = 2BD. Biết điểm \({\rm{M}}\left( {0;\frac{1}{3}} \right)\) thuộc đường thẳng AB, điểm N( 0;7) thuộc đường thẳng CD. Tìm tọa độ điểm B biết B có hoành độ dương.

Bài 10 . Trong mặt phẳng tọa độ Oxy cho tam giác ABC. Biết điểm B( -4;1) và điểm G(1;1) là trọng tâm của . Phương trình đường thẳng chứa đường phân giác trong góc B của tam giác \({\rm{ABC}}\) là \({\rm{x}} – {\rm{y}} – 1 = 0\).

a) Viết phương trình đường tròn ngoại tiếp (C) của tam giác ABC.

b) Viết phương trình tiếp tuyến với ( C) song song với đường thẳng \(3{\rm{x}} – 4{\rm{y}} + 2019 = 0\).

Phần II – Đề luyện tập

A. Phần trắc nghiệm.

Câu 1. Giá trị x = -2 là nghiệm của bất phương trình nào trong các bất phương trình dưới đây?

A. \(|x| < 2\)

B. \((x – 1)(x + 2) > 0\)

C. \(\frac{x}{{1 – x}} + \frac{{1 – x}}{x} < 0\)

D. \(\sqrt {x + 3}  < x\)

Câu 5. Tìm các giá trị thực của tham số m để bất phương trình \({\rm{x}} + {\rm{m}} > 0\) nghiệm đúng với \(\forall {\rm{x}} \in [ – 2;3]\) ?

A. \(m >  – 3\)

B. \(m \ge  – 3\)

C. \(m \ge 2\)

D. \(m > 2\)

Câu 3. Tập hợp S= [1;3] là tập nghiệm của bất phương trình nào dưới đây?

A. \(\frac{{{x^2} – 4x + 3}}{{{x^2} + 4x + 5}} \le 0\)

B. \({x^2} – 4x + 3 < 0\)

C. \({x^2} + 4x + 3 \le 0\)

D. \(\frac{{{x^2} – 4x + 3}}{{{{(x – 2)}^2}}} \le 0\)

Câu 4. Tập nghiệm của bất phương trình \(\sqrt {x + 3}  \le x + 1\) là :

A. \([1; + \infty )\)

B. \([ – 2; + \infty )\)

C. \([ – 3; – 2] \cup [1;\infty )\)

D. \([ – 1;1]\)

Câu 5. Số nghiệm nguyên dương của bất phương trình \(\frac{{x + 3}}{{2x}} + \frac{{2x}}{{x + 3}} \le 2\) là:

A. 0

B. 1

C. 2

D. Đáp số khác

Câu 6. Cho hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{{\rm{x}} + 4\;{{\rm{m}}^2} \le 2{\rm{mx}} + 1}\\{3{\rm{x}} + 2 > 2{\rm{x}} – 1}\end{array}} \right.\) (m là tham số). Giá trị tham số m để hệ bất phương trình vô nghiệm là:

A. \(m <  – 2\)

B. \(m >  – 1\)

C. \(m \le  – 2\)

D. \(m \le  – 2\)

Câu 7. Tập nghiệm của bất phương trình \(x + \sqrt {x + 2}  \le 2 + \sqrt {x + 2} \) là:

A. \(\Phi \)

B. \(( – \infty ;2)\)

C. \(\{ 2\} \)

D. \([ – 2;2]\)

Câu 8. Tập nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}}{{x^2} – 7x + 10 < 0}\\{|2x – 3| \ge 5}\end{array}} \right.\) là

A. \((4;5)\)

B. \([4;5)\)

C. \((2;4)\)

D. \((2;4]\)

Câu 9. Cho x thỏa mãn \( – 2\pi  < x <  – \pi \) và \(\tan x = \frac{3}{4}\). Khi đó giá trị của biểu thức sinx bằng:

A. 0,4

B. -0.4

C. 0,6

D. -0,6

Câu 10. Cho biểu thức \({\rm{A}} = {\rm{a}}\left( {{{\cos }^2}\alpha  – {{\sin }^8}\alpha } \right) + 4\left( {{{\sin }^2}\alpha  + {{\cos }^2}\alpha } \right) + {{\mathop{\rm bsin}\nolimits} ^4}\alpha \) (a, b là các tham số)

Tìm giá trị các tham số a,b để giá trị biểu thức A không phụ thuộc vào \(\alpha \).

A. \(a = 3\) và \(b = 6\)

B. \(a =  – 33\) và \(b = 6\)

C. \(a =  – 3\) và \(b =  – 6\)

D. \(a = 3\) và \(b =  – 6\)

Câu 11. Với mọi \(x \ne k\pi \), giá trị của biểu thức \({\rm{A}} = \sin (\pi  – {\rm{x}}) – \cos \left( {\frac{\pi }{2} – {\rm{x}}} \right) + \cot (2\pi  – {\rm{x}}) + \tan \left( {\frac{{3\pi }}{2} – {\rm{x}}} \right)\) là:

A. 0

B. 1

C. 2

D. Giá trị khác

Câu 12. Trong mặt phẳng tọa độ Oxy cho đường thẳng \((d):2x – 3y + 1 = 0\). Vectơ nào dưới đây là một véctơ chỉ phương của đường thẳng (d) ?

A. \(\vec u = (6; – 4)\)

B. \(\vec u = (3;1)\)

C. \(\vec u = ( – 3; – 2)\)

D. \(\vec u = (2; – 3)\)

Câu 13. Trong mặt phẳng tọa độ Oxy cho điểm M(1;1) và đường thẳng \({\rm{d}}:\left\{ {\begin{array}{*{20}{l}}{{\rm{x}} = 2}\\{{\rm{y}} = 4 + {\rm{t}}}\end{array}} \right.\). Tính khoảng cách từ điểm M đến đường thẳng d ?

A. 1

B. 2

C. 3

D. 5

Câu 14. Trong mặt phẳng tọa độ Oxy gọi d là đường thẳng đi qua điểm A( 2,3) cắt các tia Ox; Oy lần lượt tại các điểm M,N sao cho diện tích tam giác OMN đạt giá trị nhỏ nhất. Phương trình đường thẳng d là:

A. \(x + y + 12 = 0\)

B. \(2x – 3y + 10 = 0\)

C. \(3x + 2y – 12 = 0\)

D. \(3x + y – 12 = 0\)

Câu 15. Trong mặt phẳng tọa độ Oxy cho điểm M(1;1) và đường thẳng \({\rm{d}}:\left\{ {\begin{array}{*{20}{l}}{{\rm{x}} = 2{\rm{t}}}\\{{\rm{y}} =  – 2 + {\rm{t}}}\end{array}} \right.\). Đường thẳng đi qua điểm M tạo với d một góc bằng 30° có phương trình là:

A. \(x = 1;y = 1\)

B. \(x – y = 0\)

C. \(x + 2y – 3 = 0\)

D. \(2x – 5y + 3 = 0\)

Câu 16. Trong mặt phẳng với hệ trục tọa độ Oxy cho đường tròn \(\left( {{C_m}} \right):{{\rm{x}}^2} + {y^2} + 2mx – 4(m + 1)y – 2 = 0\)(m là tham số) và điểm A(4;1). Giá trị của tham số M để đường tròn \(\left( {{{\rm{C}}_{\rm{m}}}} \right)\) có bán kính nhỏ nhất là :

A. \(m = 0\)

B. \(m =  – 1\)

C. \(m =  – \frac{1}{2}\)

D. \(m =  – \frac{4}{5}\)

B. Phần tự luận.

Câu 1.

a) Giải bất phương trình sau trên tập số thực: \(\sqrt { – {x^2} – 8{\rm{x}} – 12}  > x + 4\)

b) Tìm giá trị thực của tham số m để bất phương trình \((m – 1){x^2} – 2(m – 1)x + 3(m – 2) > 0\) vô nghiệm.

c) Tìm các giá trị của tham số m để bất phương trình \({x^2} – 4x + m – 5 \le 0\) nghiệm đúng với \(\forall x \in ( – 1;3)\)

Câu 2 .

Rút gọn biểu thức \({\rm{A}} = \frac{{\cos 2{\rm{x}}}}{{\cos x – \sin x}} – \frac{{2{{\cos }^2}x + \sin 2x – 2\sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right)}}{{2(\cos x – 1)}}\) (với điều kiện biểu thức có nghĩa)

Câu 3 .

Trong mặt phẳng với hệ trục tọa độ Oxy, cho điểm A( 2,1) và đường thẳng \(d:x – y + 1 = 0\).

a) Tìm tọa độ điểm \({{\rm{A}}_1}\) đối xứng với điểm A qua đường thẳng d.

b) Viết phương trình đường tròn có tâm thuộc trục Ox, đi qua điểm A và tiếp xúc với đường thẳng d.

c) Viết phương trình đường thẳng song song với đường thẳng d và cắt hai trục tọa độ tại hai điểm M,N sao cho diện tích tam giác AMN bằng \(\frac{1}{2}\).

Câu 4. (Dành cho học sinh các lóp 10Tin, 10H1, 10H2, 10L1, 10L2)

Giải bất phương trình sau trên tập số thực : \(x + \sqrt {x + 4}  \ge \sqrt {2{x^2} – 10x + 17}  + 3\)

Xem thêm

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

20 câu Trắc nghiệm Biểu đồ đoạn thẳng (Chân trời sáng tạo) có đáp án 2023 – Toán lớp 7

Next post

Giáo án Đa giác. Đa giác đều (2023) – Toán 8

Bài liên quan:

20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10

Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10

Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới

Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10

Trắc nghiệm Toán 10 Kết nối tri thức có đáp án

Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)

Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10

Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Mệnh đề (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  2. Lý thuyết Mệnh đề (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  3. Giải sgk tất cả các môn lớp 10 Kết nối tri thức | Giải sgk các môn lớp 10 chương trình mới
  4. Bài giảng điện tử Mệnh đề | Kết nối tri thức Giáo án PPT Toán 10
  5. Trắc nghiệm Toán 10 Kết nối tri thức có đáp án
  6. Giải sgk Toán 10 (cả 3 bộ sách) | Giải bài tập Toán 10 (hay, chi tiết)
  7. Bài giảng điện tử Toán 10 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 10
  8. Giáo án Toán 10 Bài 1 (Kết nối tri thức 2023): Mệnh đề
  9. Giáo án Toán 10 Kết nối tri thức (cả năm) mới nhất 2023
  10. Chuyên đề Toán 10 Kết nối tri thức | Giải bài tập Chuyên đề học tập Toán 10 hay, chi tiết
  11. Sách bài tập Toán 10 Kết nối tri thức | Giải SBT Toán 10 | Giải sách bài tập Toán 10 Tập 1, Tập 2 hay nhất | SBT Toán 10 Kết nối tri thức | SBT Toán 10 KNTT
  12. Tổng hợp Lý thuyết Toán lớp 10 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 10 | Tổng hợp kiến thức Toán 10 chương trình mới
  13. Giải sgk Toán 10 Kết nối tri thức | Giải Toán 10 | Giải Toán lớp 10 | Giải bài tập Toán 10 hay nhất | Giải Toán 10 Tập 1, Tập 2 Kết nối tri thức
  14. Sách bài tập Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  15. Giải SGK Toán 10 Bài 1 (Kết nối tri thức): Mệnh đề
  16. 20 câu Trắc nghiệm Tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  17. Lý thuyết Tập hợp và các phép toán trên tập hợp (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  18. Bài giảng điện tử Tập hợp và các phép toán trên tập hợp | Kết nối tri thức Giáo án PPT Toán 10
  19. Giáo án Toán 10 Bài 2 (Kết nối tri thức 2023): Tập hợp và các phép toán trên tập hợp
  20. Sách bài tập Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  21. Giải SGK Toán 10 Bài 2 (Kết nối tri thức): Tập hợp và các phép toán trên tập hợp
  22. 30 câu Trắc nghiệm Chương 1: Mệnh đề và tập hợp (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  23. Lý thuyết Toán 10 Chương 1 (Kết nối tri thức 2023): Mệnh đề và Tập hợp hay, chi tiết
  24. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 1
  25. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  26. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 1
  27. 20 câu Trắc nghiệm Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  28. Lý thuyết Bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  29. Bài giảng điện tử Bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  30. Giáo án Toán 10 Bài 3 (Kết nối tri thức 2023): Bất phương trình bậc nhất hai ẩn
  31. Sách bài tập Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  32. Giải SGK Toán 10 Bài 3 (Kết nối tri thức): Bất phương trình bậc nhất hai ẩn
  33. Lý thuyết Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  34. Bài giảng điện tử Hệ bất phương trình bậc nhất hai ẩn | Kết nối tri thức Giáo án PPT Toán 10
  35. Giáo án Toán 10 Bài 4 (Kết nối tri thức 2023): Hệ bất phương trình bậc nhất hai ẩn
  36. 20 câu Trắc nghiệm Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  37. Sách bài tập Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  38. Giải SGK Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn
  39. Lý thuyết Toán 10 Chương 2 (Kết nối tri thức 2023): Bất phương trình và hệ phương trình bậc nhất hai ẩn hay, chi tiết
  40. Giáo án Toán 10 (Kết nối tri thức 2023): Bài tập cuối chương 2
  41. 30 câu Trắc nghiệm Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  42. Sách bài tập Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  43. Giải SGK Toán 10 (Kết nối tri thức) Bài tập cuối chương 2
  44. Lý thuyết Giá trị lượng giác của một góc từ 0 đến 180 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  45. Bài giảng điện tử Giá trị lượng giác của một góc từ 0 độ đến 180 độ | Kết nối tri thức Giáo án PPT Toán 10
  46. Giáo án Toán 10 Bài 5 (Kết nối tri thức 2023): Giá trị lượng giác của một góc từ 0 độ đến 180 độ
  47. 20 câu Trắc nghiệm Giá trị lượng giác của 1 góc từ 0° đến 180° (Kết nối tri thức 2023) có đáp án – Toán lớp 10
  48. Sách bài tập Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0° đến 180°
  49. Giải SGK Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0 đến 180
  50. Lý thuyết Hệ thức lượng trong tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 10
  51. Bài giảng điện tử Hệ thức lượng trong tam giác | Kết nối tri thức Giáo án PPT Toán 10
  52. Giáo án Toán 10 Bài 6 (Kết nối tri thức 2023): Hệ thức lượng trong tam giác

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán